def experiment(variant): beta = variant["beta"] representation_size = variant["representation_size"] m = ConvVAE(representation_size, beta=beta) for epoch in range(10): m.train_epoch(epoch) m.test_epoch(epoch) m.dump_samples(epoch)
def experiment(variant): c = joblib.load( "/Users/ashvin/data/s3doodad/ashvin/vae/point2d-conv/run0/id0/params.pkl" ) import pdb pdb.set_trace() beta = variant["beta"] representation_size = variant["representation_size"] m = ConvVAE(representation_size, beta=beta) for epoch in range(10): m.train_epoch(epoch) m.test_epoch(epoch) m.dump_samples(epoch)
def experiment(variant): if variant["use_gpu"]: gpu_id = variant["gpu_id"] ptu.set_gpu_mode(True) ptu.set_device(gpu_id) beta = variant["beta"] representation_size = variant["representation_size"] train_data, test_data = get_data(10000) m = ConvVAE(train_data, test_data, representation_size, beta=beta, use_cuda=True, input_channels=3) for epoch in range(50): m.train_epoch(epoch) m.test_epoch(epoch) m.dump_samples(epoch)