def calcAverageHollywoodNum( self, choseAccuracy ): #higher accuracy takes far more time, let user chose #chose accuracy will be the number of people used in average if (choseAccuracy > len(self.peoples)): print("Error: specified accuracy exceeds size of database") sum = 0 toReset = [] #list of people to set as not checked for future methods for x in range(choseAccuracy): #find random person to check use = self.peoples[random.randInt(0, len(self.peoples) - 1)] while (use.isChecked()): use = self.peoples[random.randInt(0, len(self.peoples) - 1)] toReset.append(use) if (len(toReset) < 2): use2 = self.peoples[random.randInt(0, len(self.peoples) - 1)] while (use2.isChecked()): use2 = self.peoples[random.randInt(0, len(self.peoples) - 1)] toReset.append(use2) else: use2 = toReset sum += self.calculateNumber(use, use2) avgNum = (sum * 1.0) / choseAccuracy for node in toReset: node.flipCheck() print("Average Bacon Number: " + avgNum + "\n")
def mutateThatJohn(neuralNetToMutate, nodes_per_layer): #don't mutate the activation functions activation_funcs=neuralNetToMutate.activation_funcs #creates new neural network neuralNetToReturn= nn.NeuralNet(activation_funcs,nodes_per_layer) weightsOf=neuralNetToMutate.weights #turn weights to one dimension weights1d= turnThreeToOne(weightsOf) #get total amount of weights totalAmtOfWeights=len(weights1d) b=0 c=0 #loop until we get two different indices while c==b: b= random.randInt(0,totalAmtOfWeights) c= random.randInt(0,totalAmtOfWeights) #grab sublist from those indices if b<c: subList=weights1d[b:c] else: subList=weights1d[c:b] #reverse the list subList.reverse() #replace elements in the list with reversed list if b<c: weights1d[b:c]=subList else: weights1d[c:b]=subList #need it back in three dimensions weightsBack=turnOneToThree(weights1d, nodes_per_layer) #set mutated weights to new neural net neuralNetToReturn.weights=weightsBack #return mutated neural net return neuralNetToReturn
def evaluation(population, selection, scoresDictionary, nodes_per_layer): #start list of next population nextPopulation=[] #grab the parents we will be using parents=selection.keys() #mutate some of the population and append them for the next generation nextPopulation.append(mutateThoseJohns(population, selection, scoresDictionary, nodes_per_layer)) #append parents to the next population nextPopulation.append(parents) #loop until we have a full next population while len(nextPopulation)<population: #parent indices par1=0 par2=0 #until two different parents while par1==par2: par1=random.randInt(0,len(parents)-1) par2=random.randInt(0,len(parents)-1) #grab the parents parent1=parents[par1] parent2=parents[par2] #create the child child= crossover(parent1, parent2, nodes_per_layer) #append the child nextPopulation.append(child) return nextPopulation
def generateGameTitle(): title1 = ['Mario', 'Zelda', 'Portal', 'Minecraft', 'Borderlands', 'Roller Coaster'] subtitle = [': Zero Mission', ': Breath of the Wild', ': Sword and Shield', " 2", " Party", " Tycoon"] title1Loc = random.randInt(0,4) subtitleLoc = random.randInt(0,5) title = title1[title1Loc] + subtitle[subtitleLoc] return title
def generateName(): first = ['Bob', 'Steve', 'Joe', 'Katie', 'Jessica', 'Elizabeth'] last = ['Jones', 'Smith', 'Williams', 'Brown', 'Davis', 'Miller'] firstLoc = random.randInt(0,4) lastLoc = random.randInt(0,5) name = first[firstLoc] + " " + last[lastLoc] return name
def generateConsole(): first = ['Microsoft', 'Sony', 'Nintendo'] last = ['Switch', 'Xbox', 'Playstation'] firstLoc = random.randInt(0,2) lastLoc = random.randInt(0,2) console = first[firstLoc] + " " + last[lastLoc] return console
def get_guess_from_session(intent, session): session_attributes = {} reprompt_text = None if session.get('attributes', {}) and "numberOfDice" in session.get( 'attributes', {}): number_of_dice = session['attributes']['numberOfDice'] if number_of_dice == 1: numberRolled = random.randInt(1, 6) if guess == numberRolled: speech_output = "You guess correctly. Congratulations." should_end_session = True else: speech_output = "You guess incorrectly. Sorry." else: numberRolled = random.randInt(2, 12) if guess == numberRolled: speech_output = "You guess correctly. Congratulations." else: speech_output = "You guess incorrectly. Sorry." else: speech_output = "I don't know how many dice to roll. I can roll one or two dice." should_end_session = False return build_response( session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session))
def _find_external_v4_ip(config): v4_id = config.external_v4_id if v4_id: return v4_id else: # fallback to random value return '0.0.%d.%d' % (random.randInt(0, 255), random.randInt(0, 255))
def addRandom(board): addCount=0 while addCount<5: delX=random.randInt(0,boardSize-1) delY=random.randInt(0,boardSize-1) if board[delY][delX]==0: addCount+=1 board[delY][delX]=random.randInt(1,2)
def dropItem(bossAlive, dropResult, dropChance, ownedItems): if (bossAlive = False): #ezt az ifet kivesszük, ha készen lesz az a függvény, ami a boss halálakor meghívja ezt a függvényt dropResult = rnd.randInt(0,100) if (dropResult <= dropChance[2]): if (dropResult <= dropChance[1]): if (dropResult <= dropChance[0]): ownedItems.append(rnd.randInt(20,30)) #tier 3-as itemek sorszámai: 21-30 else: ownedItems.append(rnd.randInt(10,20)) #tier 2-es itemek sorszámai: 11-20 else: ownedItems.append(rnd.randInt(0,10)) #tier 1-es itemek sorszámai: 1-10 else:
def crossover(neuralNetwork1, neuralNetwork2, nodes_per_layer): #get the weights of each neural network weights1=neuralNetwork1.weights weights2=neuralNetwork2.weights #get the activation functions of each neural network activation1=neuralNetwork1.activation_funcs activation2=neuralNetwork2.activation_funcs #get number of activation functions actives=len(activation1) #get random int for one-point crossover of activation functions cross=random.randInt(0,actives) activation_funcs=[] for a in range(0,actives): if a<cross: activation_funcs.append(activation1[a]) else: activation_funcs.append(activation2[a]) #create initial neural net to return net= nn.NeuralNet(activation_funcs,nodes_per_layer) #get total amount of weights totalAmtOfWeights=0 for a in range(0,len(weights)): for b in range(0,len(weights[a])): for c in range(0,len(weights[a][b])): totalAmtOfWeights+=1 #grab two random ints for two-point crossover b=0 c=0 while b==c: b= random.randInt(0,totalAmtOfWeights) c= random.randInt(0,totalAmtOfWeights) #find the lower index if b<c: first=b second=c else: first=c second=b counter=0 #crossover weights to child for a in range(0,len(weights)): for b in range(0,len(weights[a])): for c in range(0,len(weights[a][b])) if counter<first: net.weights[a][b][c]=weights1[a][b][c] else if counter>=first and counter<second: net.weights[a][b][c]=weights2[a][b][c] else: net.weights[a][b][c]=weights1[a][b][c] counter+=1 #return child return net
def createRandomUnweightedGraph(n): graph = Graph() numbers = list(range(n)) for number in numbers: graph.addNode(num) nodelist = graph.getAllNodes(): for node1 in nodelist: indexatnode=nodelist.index(node1) randomNum = random.randInt(0, indexatnode) randomNum2 =random.randInt(1, n//2) randomNumUse = randomNum // randomNum2 for node2 in randomNumUse: graph.addUndirectedEdge(node1, node2) return graph
def __init__(self, nPlayers, properties, places): self.players = [Player(i) for i in range(nPlayers)] self.properties = properties self.places = places self.nPlaces = len(places) possibleOrders = list(itertools.permutations(range(nPlayers))) turnOrder = possibleOrders[random.randInt(0, len(possibleOrders) - 1)]
def e_Greedy(self, mode, network, state, testing_ep, subgoal, lastsubgoal): # handle the learn start print "enter e_greedy: ", mode if mode == 'meta': learn_start = self.meta_learn_start else: learn_start = self.learn_start if testing_ep: self.ep = testing_ep else: self.ep = (self.ep_end + max(0, (self.ep_start - self.ep_end) *\ (self.ep_endt - max(0, self.numSteps - learn_start))/self.ep_endt)) subgoal_id = subgoal[-1] if mode != 'meta' and subgoal_id != 6 and subgoal_id != 8: self.ep = 0.1 n_actions = None if mode == 'meta': n_actions = self.meta_args['n_actions'] else: n_actions = self.transition_args['n_actions'] print "enter e_greedy" # epsilon greedy self.ep = -1 ## To do: delete this after testing network if random.uniform(0,1) < self.ep: if mode == 'meta': chosen_act = random.randint(0, n_actions-1) while chosen_act == lastsubgoal: chosen_act = random.randint(0, n_actions-1) return chosen_act, None else: return random.randInt(0, n_actions-1), None else: return self.greedy(network, n_actions, state, subgoal, lastsubgoal)
def send(self, m): global cli global key cli.sendto( self.pub.encrypt(key.decrypt(m), long(random.randInt(1, 999999))).encode(), self.addr)
def mutateThoseJohns(population, selectionDictionary, scoresDictionary, nodes_per_layer, mutate=0.03): #get the list of neural networks listOfPotential=scoresDictionary.keys() #get the list of the selected neural networks listOfSelected=selectionDictionary.keys() #find the length of the list of potential totalLength=len(listOfPotential) #set amount selected to 0 amountForMutate=0 #set amount to select to the proportion of the population needed to #be mutated amountToMutate=population*mutate #list of mutated listOfMutated=[] #loop until all have been selected for mutation while(amountForMutate<amountToMutate): #get a random index to select randomIndex=random.randInt(0,totalLength-1) #select it neuralNetToMutate=listOfPotential[randomIndex] #if it was not already selected if(neuralNetToMutate not in listOfSelected): #mutate it neuralNetToMutate=mutateThatJohn(neuralNetToMutate, nodes_per_layer) #add it to the list listOfMutated.append(neuralNetToMutate) #increment amountForMutate+=1 #return list return listOfMutated
def behaviour3(): strlen = random.randInt(1, 1000) randomstring = ''.join( random.choice(string.lowercase) for i in range(strlen)) pyautogui.typewrite(randomstring) for x in range(1, 7): pyautogui.hotkey('ctrl', 'v')
def addDLC(): for(int i = 0; i < 180; i++): if(random.randInt(0,1) == 0): query = "Insert into DLC(" + i + ", " + generatePrice() + ", " + generateGame() + " Expansion Pass, true, false)" insertRecord(query) else: query = "Insert into DLC(" + i + ", " + generatePrice() + ", " + generateGame() + " Expansion Pass, false, true)" insertRecord(query)
def spinWheel(): randomVal = random.randInt(0,36) if randomVal in red: return ('red', randomVal) elif randomVal in black: return ('black', randomVal) else: return ('green', randomVal)
def main(): randomlist = [] for i in range(10): randomlist.append(random.randInt(0, 100)) print(randomlist) evenindex(randomlist) evenelement(randomlist) x = firstandlast(randomlist)
def p2_move(): global board move = True # Winning for row in range(3): for col in range(3): copy_board = copy.deepcopy(board) if copy_board[row][col] == ' ': copy_board[row][col] = current_player if move and is_winner(copy_board, current_player): board[row][col] = current_player move = False # Blocking if move: for row in range(3): for col in range(3): copy_board = copy.deepcopy(board) if copy_board[row][col] == ' ': copy_board[row][col] = 'X' if move and is_winner(copy_board, 'X'): board[row][col] = current_player move = False # Cornering if move: corner_list = [(0, 0), (0, 2), (2, 0), (2, 2)] for pos in corner_list: if board[pos[0]][pos[1]] != ' ': corner_list.remove(pos) if len(corner_list) > 0: rand_side = random.choice(corner_list) board[rand_side[0]][rand_side[1]] = current_player move = False # Center if move: if board[1][1] == ' ': board[1][1] = current_player move = False # Sides else: while move == True: rand_int_row = random.randInt(0, 2) rand_int_col = random.randInt(0, 2) if board[rand_int_row][rand_int_col] == ' ': board[rand_int_row][rand_int_col] = current_player move = False
def move(my_history, their_history, my_score, their_score): chance = random.randInt(1, 8) if 'b' in their_history: if chance == int(1): return 'c' else: return 'b' else: return 'c'
def genRandom(population, nodes_per_layer): neuralNets=[] layers=len(nodes_per_layer) for p in range(0,population): activation_funcs=[] for q in range(0,layers): activation_funcs.append(random.randInt(0,9)) net= nn.NeuralNet(activation_funcs,nodes_per_layer) neuralNets.append(net) return neuralNets
def arcPath(): loopNum = 0 sideLength = 0 import random i = 0 sideLength = random.randInt(10) angle = 360 / loopNum for _ in range(loopNum): controller.move("forward", sideLength) controller.turn("left", angle)
def __init__(self, dataHandler): # Player 1 = 0 # Player 2 = 1 playerTurn = 0 # Access player 1: # faceUpFigures[0] # Access player 2: # faceUpFigures[1] indices = range(0,dataHandler.numFigures) faceUpFigures = indices + indices # Access player 1: # playerFigures[0] # Access player 2: # playerFigures[1] playerFigures = [0,0] while playerFigures[0] == playerFigures[1]: playerFigures = [rand.randInt(0,dataHandler.numFigures-1), rand.randInt(0,dataHandler.numFigures-1)]
def admit(self, patient): if len(self.patients) >= capacity: print( "{} is currently at full capacity. We cannot admit {} at this time." .format(self.name, patient.name)) return self else: self.patients.append(patient) patient.bed_number = random.randInt(1, self.capacity) print("Admission successful!") return self
def dropSingle(u): r = random.randint(0, 10000) if r >= 9900: return rand_three_star(u) if r >= 9000: return rand_two_star(u) elif r >= 4000: return rand_one_star(u) else: r = random.randInt(100, 1000) return item.Item("Mora", r)
def splitData( self, k, seed, data=None, M=8 ): self.testdata = {} self.traindata = {} data = data or self.data random.seed( seed ) for user, item, record in data: if random.randInt(0, M) == k: self.testdata.setdefault( user, {} ) self.testdata[user][item] = record else: self.traindata.setdefault( user, {} ) self.traindata[user][item] = record
def main(): win = gr.GraphWin("Press a key", 400, 400, False) shapes = [] c = gr.Circle(gr.Point(250, 250, 10)) c.draw(win) shapes.append(c) while True time.sleep(0.5) for thing in shapes: dx=random.randInt(-10,10) dy = random.randInt(-10,10) thing.move(dx,dy) win.update() if win.checkMouse() break win.close()
def splitData(self, k, seed, data=None, M=8): self.testdata = {} self.traindata = {} data = data or self.data random.seed(seed) for user, item, record in data: if random.randInt(0, M) == k: self.testdata.setdefault(user, {}) self.testdata[user][item] = record else: self.traindata.setdefault(user, {}) self.traindata[user][item] = record
def coinPath(): coinFlip = random.randInt(1,2) if coinFlip == 1: path = "left" coinResult = "heads" print("Heads. You begin taking the longer path to the left") time(6) if coinFlip == 2: path = right coinResult = "tails" print("Tails. You rush into the forest") time(3)
def __init__(self): # random number for inital direction of ball num = random.randInt(0,9) # keep score self.tally = 0 # initalize positions of our paddle self.paddle1YPos = WINDOW_HEIGHT / 2 - PADDLE_HEIGHT / 2 self.paddle2YPos = WINDOW_HEIGHT /2 - PADDLE_HEIGHT / 2 # ball direction definition self.ballXDirection = 1 self.ballYDirection = 1 # starting point self.ballXPos = WINDOW_HEIGHT / 2 - BALL_WIDTH / 2
def __init__(self): #definindo número aleatório para direção inicial da bola num = random.randInt(0, 9) #recupera o ponto self.tally = 0 #Inicializando a posição inicial da raquete self.paddle1YPos = WINDOW_HEIGHT / 2 - PADDLE_HEIGHT / 2 self.paddle2YPos = WINDOW_HEIGHT / 2 - PADDLE_HEIGHT / 2 #definindo a direção da bola self.ballXDirection = 1 self.ballYDirection = 1 #ponto inicial self.ballXpos = WINDOW_HEIGHT / 2 - BALL_WIDTH / 2
def tell(self,character,obj): if random.rand()>0.8: self.refuse() return false myobj = remember(obj) if myobj is None: printutils.formatdialog(self.pronouns,"I'm afraid I don't know anything about that","said") printutils.new_paragraph() return false if type(myobj) is Location: #TODO: say its catchphrase and attributes and up to five times either: a character who is there, a route that goes there, an item that's there printutils.print_single("Ah, yes, I've been there. "+myobj.catchphrase+" "+myobj.attributes) for i in range(random.randInt(1,5)): if i>0: else: #TODO: learn the asker the relevant info, add knowledge item to character's knowledge if type(myobj) is Item: #TODO: say its catchphrase and attributes and up to five times either: where it is/who has it, what it does, or what it can accomplish (one state it can be used to get to) for i in range(random.randInt(1,5)): pass #TODO: learn the asker the relevant info re if type(myobj) is Character: #TODO: say its catchphrase and attributes and up to five times either: their current location, their current goal, an item they have, a bit of history for i in range(random.randInt(1,5)): pass #TODO: learn the asker the relevant info if type(myobj) is State: if myobj.character.name != character.name: printutils.formatdialog(self.pronouns,"I'm afraid you won't be able to do that at all!","explained") else: pass #TODO: learn the asker all inputs to this state (yes i realize a person won't always know everything about how to achieve something, but we're going to assume they do to simiplify algorithms return true
def encourage(e, q): x = randInt(1,6) if q >= .75: if x <= 3: output("You are doing fantastic! Do you even need me?") else: output("Absolute perfection! Why am I here?") if .75 > q >= .5: if x <= 2: output("Almost there, try concentrating on your form!") if 4 >= x > 2: output("I knew you could do it, now make it perfect!") else: output("Keep going, today is the day you set a new PR") if .5 > q >= .25: if x <= 3: output("Try slowing down and really working on your technique.") else: output("Nobody was perfect on their first try, keep working at it.") if q < .25: output("Is everything okay? Try watching the help videos.")
def explode(self, maxObjects=3): for geom in self.objExplode: x, y, z = geom.getPosition() if geom.getBody(): self.space[0].remove(geom) self.removeGeom(geom) try: for _ in range(randInt(0, maxObjects)): g = self.create_geom(maxSize=0.3) for _ in range(self.maxInsertTrials): g.setPosition(self.randomPos(x, y, z, 0.3)) if not self.insertCollision(g): self.addGeom(g) self.GetProperty(g).SetOpacity(0.25) break except ValueError: print ("not my fault") self.objExplode = []
def boss_room(): global maxhealth global health global attack_min global attack_max global bosshealth global bossdamage print "You open the door and walk inside to see a room that is warm and cozy. Not dark like the other but well lit with torches and candles" print "You also see the one that has kept you here an old slim man" print "So you think you can escape my castle good luck" print "What do you do?" print "1) Kill the boss." nextfinal = raw_input(">") if nextfinal == "1": while bosshealth <= 0: bossdamage = bossdamage + random.randInt(0,5) health = bossdamage - health bosshealth = bosshealth - random.randint(0+ attack_min,20+attack_max) if health <= 0: print "Now you are here forever" exit() print "it cant be"
def create_geom(self, minSize=0.1, maxSize=0.5, minDensity=100, maxDensity=100, minmaxForce=100): """Create a box body and its corresponding geom.""" element = randInt(1, 3) if element == 1: body, geom = self.create_sphere(rand(minDensity, maxDensity), rand(minSize, maxSize)) elif element == 2: body, geom = self.create_capsule(rand(minDensity, maxDensity), rand(minSize, maxSize), rand(minSize, maxSize)) elif element == 3: body, geom = self.create_box(rand(minDensity, maxDensity), rand(minSize, maxSize), rand(minSize, maxSize), rand(minSize, maxSize)) body.addForce((rand(-minmaxForce, minmaxForce), rand(-minmaxForce, minmaxForce), rand(-minmaxForce, minmaxForce))) return geom
def parsecodes(allStates): url = 'https://web3.ncaa.org/hsportal/exec/hsAction' codehtmlfilename = 'schoollist.html' codetextfile = 'codes.txt' user_agent = { 'User-agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36'} session = requests.Session() try: os.remove(codetextfile) except OSError: pass try: for state in allStates: print state response = session.post(url, headers=user_agent, data={'hsActionSubmit': 'Search', 'state': state}) time.sleep(randInt(2, 4)) with open(codehtmlfilename, 'w') as codefile: print >> codefile, response.text.encode('utf-8') with open(codehtmlfilename) as f: pagedata = f.read() soup = BeautifulSoup(pagedata, "html.parser") allvalues = soup.find_all('input', {'name': 'hsCode'}) for s in allvalues: codevalue = s.attrs['value'].strip() print codevalue if codevalue: with open(codetextfile, 'a') as myfile: myfile.write(state + '|' + codevalue + '\n') finally: session.close() print 'Finished saving the codes'
" 정재훈 ", " 정지윤 ", " 정현지 ", " 정희영 ", " 조대연 ", " 조승완 ", " 진유림 ", " 차강혁 ", " 천상원 ", " 최가람 ", " 최병훈 ", " 최봉재 ", " 최정연 ", " 최현묵 ", " 추은선 ", " 하동현 ", " 하조은 ", " 하태지 ", " 한웅제 ", " 홍은진 ", " Hanur Lee ", " Hyesu Bae ", " Jinho Jung ", " xodla " ] for i in range(0, 20): member_count = len(9xd_members) idx = random.randInt(member_count) print(9xd_members.pop(idx))
import random class AI(BaseAI): """The class implementing gameplay logic.""" @staticmethod def username(): return "Shell AI" @staticmethod def password(): return "password" CLAW, ARCHER, REPAIRER, HACKER, TURRET, WALL, TERMINATOR, HANGAR = range(8) def spawn(self) self.players[self.playerID].orbitalDrop(0,0,random.randInt(0,7)) return ##This function is called once, before your first turn def init(self): pass ##This function is called once, after your last turn def end(self): pass ##This function is called each time it is your turn ##Return true to end your turn, return false to ask the server for updated information def run(self):
import RPi.GPIO as GPIO from time import sleep import random GPIO.setmode(GPIO.BCM) GPIO.setup(24, GPIO.IN, pull_up_down = GPIO.PUD_UP) GPIO.setup(25, GPIO.OUT) coins = 6 GPIO.output(25,GPIO.LOW) result = random.randInt(1,9) jackpot = 10 halfWin = 5 moneyBack = 1 while True: sleep(2) if result == jackpot or result == halfWin or result == moneyBack: GPIO.wait_for_edge(24, GPIO.RISING) coins += 1 if result == jackpot: if coins == 10: GPIO.output(25,GPIO.LOW) print "jackpot" else: GPIO.output(25,GPIO.HIGH)
def getRandomKey(): while True: keyA = random.randInt(2,len(SYMBOLS)) keyB = random.randInt(2,len(SYMBOLS)) if(gcd(keyA,len(SYMBOLS)) == 1): return keyA * len(SYMBOLS) + keyB