from random_generation.graph_generators import generate_connected_graph from visualization.nx_graph import display_weighted_nx_graph if __name__ == "__main__": G = generate_connected_graph(50, 60) display_weighted_nx_graph(G)
from algorithms.dijkstras_algorithm import DijkstraAlgorithm, generate_adjacency_matrix from random_generation.graph_generators import generate_connected_graph from visualization.nx_graph import display_weighted_nx_graph import networkx as nx if __name__ == "__main__": G = generate_connected_graph(6, 7) adj_matrix_with_distances = nx.to_numpy_array(G) adj_matrix_with_distances = adj_matrix_with_distances.tolist() adj_matrix = generate_adjacency_matrix(adj_matrix_with_distances) dijkstra = DijkstraAlgorithm(adj_matrix_with_distances, adj_matrix) dijkstra.all_shortest_paths(1) display_weighted_nx_graph(G)
from random_generation.graph_generators import generate_connected_graph from visualization.nx_graph import display_weighted_nx_graph from algorithms.minimum_spanning_tree import find_minimum_spanning_tree if __name__ == "__main__": graph = generate_connected_graph(6, 12) display_weighted_nx_graph(graph, filename="input_graph.png") minimum_spanning_tree = find_minimum_spanning_tree(graph) display_weighted_nx_graph(minimum_spanning_tree, filename="mse.png")