def test_all_random_graphs_yield_correct_number_of_nodes_and_edges(self): G, A, D = random_graph.target_attraction(N=426, N_edges=2000) self.assertEqual(len(G.nodes()), 426) self.assertEqual(len(G.edges()), 2000) G, A, D = random_graph.source_growth(N=426, N_edges=2000) self.assertEqual(len(G.nodes()), 426) self.assertEqual(len(G.edges()), 2000)
print('Making example models...') g_sg_l_inf, a_sg_l_inf, d_sg_l_inf = source_growth( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=np.inf, gamma=1, brain_size=BRAIN_SIZE) g_sg_l_0725, a_sg_l_0725, d_sg_l_0725 = source_growth( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1, brain_size=BRAIN_SIZE) g_ta_l_inf, a_ta_l_inf, d_ta_l_inf = target_attraction( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=np.inf, gamma=1, brain_size=BRAIN_SIZE) g_ta_l_0725, a_ta_l_0725, d_ta_l_0725 = target_attraction( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1, brain_size=BRAIN_SIZE) # make graphs and calculate and save reciprocities if not done yet if not os.path.isfile(RECIPROCITY_FILE_NAME): print('Looping through construction of models for reciprocity...') algos = {'sg': source_growth, 'ta': target_attraction} rs = {'LS': LS}
import in_out_plot_config as cf MARKERSIZE = 25. FONTSIZE = 12. ALPHA = 0.5 L = 0.725 BRAIN_SIZE = [7., 7., 7.] ###################################### # Create graphs and calculate metrics ###################################### # create attachment and growth models G_attachment = target_attraction(N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1., brain_size=BRAIN_SIZE)[0] G_growth = source_growth(N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1., brain_size=BRAIN_SIZE)[0] # Get in- & out-degree indeg_attachment = np.array([G_attachment.in_degree()[node] for node in G_attachment]) outdeg_attachment = np.array([G_attachment.out_degree()[node] for node in G_attachment]) deg_attachment = indeg_attachment + outdeg_attachment indeg_growth = np.array([G_growth.in_degree()[node] for node in G_growth]) outdeg_growth = np.array([G_growth.out_degree()[node] for node in G_growth])
import config import in_out_plot_config as cf MARKERSIZE = 25. FONTSIZE = 13. ALPHA = 0.5 L = np.inf BRAIN_SIZE = [7., 7., 7.] # create attachment and growth models Gattachment, _, _ = target_attraction( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1., brain_size=BRAIN_SIZE, ) Ggrowth, _, _ = source_growth( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1., brain_size=BRAIN_SIZE, ) # Get in- & out-degree indeg_attachment = np.array( [Gattachment.in_degree()[node] for node in Gattachment])
g_brain, a_brain, labels = brain_graph.binary_directed() brain_in_deg = g_brain.in_degree().values() brain_out_deg = g_brain.out_degree().values() # load distance matrix d_brain = load_brain_dist_matrix(labels, in_mm=True) # make two SG graphs and two TA graphs (each one with either L=0.725 or 0) print('Making example models...') g_sg_l_inf, a_sg_l_inf, d_sg_l_inf = source_growth( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=np.inf, gamma=1, brain_size=BRAIN_SIZE) g_sg_l_0725, a_sg_l_0725, d_sg_l_0725 = source_growth( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1, brain_size=BRAIN_SIZE) g_ta_l_inf, a_ta_l_inf, d_ta_l_inf = target_attraction( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=np.inf, gamma=1, brain_size=BRAIN_SIZE) g_ta_l_0725, a_ta_l_0725, d_ta_l_0725 = target_attraction( N=bc.num_brain_nodes, N_edges=bc.num_brain_edges_directed, L=L, gamma=1, brain_size=BRAIN_SIZE) # make graphs and calculate and save reciprocities if not done yet if not os.path.isfile(RECIPROCITY_FILE_NAME): print('Looping through construction of models for reciprocity...') algos = {'sg': source_growth, 'ta': target_attraction} rs = {'LS': LS} for key, algo in algos.items(): print(key) rs[key] = np.nan * np.zeros((len(LS), N_REPEATS), dtype=float)