def TrainingModels(target_label, model_file_name, training_list): '''Randomly select num_training records to train, and test others.''' qt = QTloader() record_list = qt.getreclist() testing_list = list(set(record_list) - set(training_list)) random_forest_config = dict(max_depth=10) walker = RandomWalker(target_label=target_label, random_forest_config=random_forest_config, random_pattern_file_name=os.path.join( os.path.dirname(model_file_name), 'random_pattern.json')) start_time = time.time() for record_name in training_list: print 'Collecting features from record %s.' % record_name sig = qt.load(record_name) walker.collect_training_data(sig['sig'], qt.getExpert(record_name)) print 'random forest start training(%s)...' % target_label walker.training() print 'trianing used %.3f seconds' % (time.time() - start_time) import joblib start_time = time.time() walker.save_model(model_file_name) print 'Serializing model time cost %f' % (time.time() - start_time)
def TrainingModels(target_label, model_file_name, training_list): '''Randomly select num_training records to train, and test others. CP: Characteristic points ''' qt = QTloader() record_list = qt.getreclist() testing_list = list(set(record_list) - set(training_list)) random_forest_config = dict(max_depth=10) walker = RandomWalker(target_label=target_label, random_forest_config=random_forest_config, random_pattern_file_name=os.path.join( os.path.dirname(model_file_name), 'random_pattern.json')) start_time = time.time() for record_name in training_list: CP_file_name = os.path.join( '/home/alex/code/Python/EcgCharacterPointMarks', target_label, '%s_poslist.json' % record_name) # Add expert marks expert_marks = qt.getExpert(record_name) CP_marks = [x for x in expert_marks if x[1] == target_label] if len(CP_marks) == 0: continue # Add manual labels if possible if os.path.exists(CP_file_name) == True: with open(CP_file_name, 'r') as fin: CP_info = json.load(fin) poslist = CP_info['poslist'] if len(poslist) == 0: continue CP_marks.extend(zip(poslist, [ target_label, ] * len(poslist))) print 'Collecting features from record %s.' % record_name sig = qt.load(record_name) walker.collect_training_data(sig['sig'], CP_marks) print 'random forest start training(%s)...' % target_label walker.training() print 'trianing used %.3f seconds' % (time.time() - start_time) import joblib start_time = time.time() walker.save_model(model_file_name) print 'Serializing model time cost %f' % (time.time() - start_time)
def TrainingModels_Changgeng(target_label, model_file_name): '''Randomly select num_training records to train, and test others. CP: Characteristic points ''' from changgengLoader import ECGLoader ecg = ECGLoader(500, current_folderpath) random_forest_config = dict(max_depth=10) walker = RandomWalker(target_label=target_label, random_forest_config=random_forest_config, random_pattern_file_name=os.path.join( os.path.dirname(model_file_name), 'random_pattern.json')) start_time = time.time() for record_ind in xrange(0, len(ecg.P_faillist)): record_name = ecg.P_faillist[record_ind] CP_file_name = os.path.join(current_folderpath, 'data', 'labels', target_label, '%s_poslist.json' % record_name) CP_marks = [] # Add manual labels if possible if os.path.exists(CP_file_name) == True: with open(CP_file_name, 'r') as fin: print 'Collecting features from record %s.' % record_name CP_info = json.load(fin) poslist = CP_info['poslist'] if len(poslist) == 0: continue CP_marks.extend(zip(poslist, [ target_label, ] * len(poslist))) sig = ecg.load(record_ind) walker.collect_training_data(sig[0], CP_marks) print 'random forest start training(%s)...' % target_label walker.training() print 'trianing used %.3f seconds' % (time.time() - start_time) import joblib start_time = time.time() walker.save_model(model_file_name) print 'Serializing model time cost %f' % (time.time() - start_time)
def TrainingModels(target_label, model_file_name, training_list): '''Randomly select num_training records to train, and test others.''' qt = QTloader() record_list = qt.getreclist() testing_list = list(set(record_list) - set(training_list)) random_forest_config = dict(max_depth=10) walker = RandomWalker(target_label=target_label, random_forest_config=random_forest_config, random_pattern_file_name=os.path.join( os.path.dirname(model_file_name), 'random_pattern.json')) start_time = time.time() for record_name in training_list: Tonset_file_name = os.path.join( '/home/alex/code/Python/Tonset/results', '%s_poslist.json' % record_name) if os.path.exists(Tonset_file_name) == True: with open(Tonset_file_name, 'r') as fin: Tonset_info = json.load(fin) poslist = Tonset_info['poslist'] if len(poslist) == 0: continue Tonset_marks = zip(poslist, [ 'Tonset', ] * len(poslist)) else: expert_marks = qt.getExpert(record_name) Tonset_marks = [x for x in expert_marks if x[1] == 'Tonset'] if len(Tonset_marks) == 0: continue print 'Collecting features from record %s.' % record_name sig = qt.load(record_name) walker.collect_training_data(sig['sig'], Tonset_marks) print 'random forest start training(%s)...' % target_label walker.training() print 'trianing used %.3f seconds' % (time.time() - start_time) import joblib start_time = time.time() walker.save_model(model_file_name) print 'Serializing model time cost %f' % (time.time() - start_time)
def TrainingModels_Changgeng(target_label, model_file_name): '''Randomly select num_training records to train, and test others. CP: Characteristic points ''' import glob annot_jsonIDs = glob.glob( os.path.join(current_folderpath, 'data', 'labels', target_label, '*.json')) annot_jsonIDs = [os.path.split(x)[-1] for x in annot_jsonIDs] annot_jsonIDs = [x.split('.')[0] for x in annot_jsonIDs] # skip failed records faillist = [ 8999, 8374, 6659, 6655, 6059, 5395, 1401, 1269, 737, 75, 9524, 9476 ] faillist = [str(x) for x in faillist] annot_jsonIDs = list(set(annot_jsonIDs) - set(faillist)) from changgengLoader import ECGLoader ecg = ECGLoader(500, current_folderpath) random_forest_config = dict(max_depth=10) walker = RandomWalker(target_label=target_label, random_forest_config=random_forest_config, random_pattern_file_name=os.path.join( os.path.dirname(model_file_name), 'random_pattern.json')) start_time = time.time() for record_ind in xrange(0, len(annot_jsonIDs)): record_name = annot_jsonIDs[record_ind] CP_file_name = os.path.join(current_folderpath, 'data', 'labels', target_label, '%s.json' % record_name) CP_marks = [] # Add manual labels if possible if os.path.exists(CP_file_name) == True: with open(CP_file_name, 'r') as fin: CP_info = json.load(fin) poslist = CP_info['poslist'] poslist = [int(x / 2) for x in poslist] mat_file_name = CP_info['mat_file_name'] if len(poslist) == 0: continue CP_marks.extend(zip(poslist, [ target_label, ] * len(poslist))) print 'Collecting features from record %s.' % record_name sig = ecg.load(record_name) raw_sig = sig[0] import scipy.signal resampled_sig = scipy.signal.resample_poly(raw_sig, 1, 2) raw_sig = resampled_sig # debug # plt.figure(1) # plt.plot(raw_sig, label = 'signal') # plt.plot(xrange(0, len(raw_sig), 2), resampled_sig, label = 'resmaple') # plt.legend() # plt.grid(True) # plt.title(record_name) # plt.show() walker.collect_training_data(raw_sig, CP_marks) # Add QT training samples # ContinueAddQtTrainingSamples(walker, target_label) print 'random forest start training(%s)...' % target_label walker.training() print 'trianing used %.3f seconds' % (time.time() - start_time) import joblib start_time = time.time() walker.save_model(model_file_name) print 'Serializing model time cost %f' % (time.time() - start_time)