コード例 #1
0
def four_peaks(length, random_seeds):

    # Define Four Peaks objective function and problem
    four_fitness = FourPeaks(t_pct=0.1)
    problem = DiscreteOpt(length=length,
                          fitness_fn=four_fitness,
                          maximize=True,
                          max_val=2)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=100,
                          sa_max_iters=1000,
                          ga_max_iters=50,
                          mimic_max_iters=50,
                          sa_init_temp=100,
                          sa_decay_rates=np.arange(0.002, 0.04, 0.002),
                          sa_min_temp=0.001,
                          ga_pop_size=1000,
                          mimic_pop_size=1000,
                          ga_keep_pct=0.1,
                          mimic_keep_pct=0.2,
                          pop_sizes=np.arange(100, 1001, 100),
                          keep_pcts=np.arange(0.1, 0.51, 0.1),
                          plot_name='Four Peaks',
                          plot_ylabel='Fitness')

    # Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot performances for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=1000,
                         sa_max_iters=5000,
                         ga_max_iters=100,
                         mimic_max_iters=100,
                         sa_init_temp=100,
                         sa_exp_decay_rate=0.02,
                         sa_min_temp=0.001,
                         ga_pop_size=1000,
                         ga_keep_pct=0.1,
                         mimic_pop_size=1000,
                         mimic_keep_pct=0.2,
                         plot_name='Four Peaks',
                         plot_ylabel='Fitness')
コード例 #2
0
def Knapsack_f(length, weights, values, random_seeds):
    Knapsack_objective = Knapsack(weights, values, max_weight_pct=0.35)
    problem = DiscreteOpt(length=length,
                          fitness_fn=Knapsack_objective,
                          maximize=True,
                          max_val=2)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=1000,
                          sa_max_iters=1000,
                          ga_max_iters=250,
                          mimic_max_iters=50,
                          sa_init_temp=100,
                          sa_decay_rates=np.arange(0.05, 2.01, 0.05),
                          sa_min_temp=0.001,
                          ga_pop_size=300,
                          mimic_pop_size=1500,
                          ga_keep_pct=0.2,
                          mimic_keep_pct=0.4,
                          pop_sizes=np.arange(100, 2001, 200),
                          keep_pcts=np.arange(0.1, 0.81, 0.1),
                          plot_name='Knapsack',
                          plot_ylabel='Fitness')

    # Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot performances for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=1000,
                         sa_max_iters=1000,
                         ga_max_iters=500,
                         mimic_max_iters=100,
                         sa_init_temp=100,
                         sa_exp_decay_rate=0.020,
                         sa_min_temp=0.001,
                         ga_pop_size=100,
                         ga_keep_pct=0.2,
                         mimic_pop_size=300,
                         mimic_keep_pct=0.4,
                         plot_name='Knapsack',
                         plot_ylabel='Fitness')
コード例 #3
0
def travel_salesman(length, distances, random_seeds):

    # Define Travel Salesman objective function and problem
    fitness_dists = TravellingSales(distances=distances)
    # Define optimization problem object
    problem = TSPOpt(length=length, fitness_fn=fitness_dists, maximize=False)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=500,
                          sa_max_iters=500,
                          ga_max_iters=50,
                          mimic_max_iters=50,
                          sa_init_temp=100,
                          sa_decay_rates=np.arange(0.005, 0.05, 0.005),
                          sa_min_temp=0.001,
                          ga_pop_size=100,
                          mimic_pop_size=100,
                          ga_keep_pct=0.2,
                          mimic_keep_pct=0.2,
                          pop_sizes=np.arange(100, 401, 100),
                          keep_pcts=np.arange(0.1, 0.51, 0.1),
                          plot_name='TSP',
                          plot_ylabel='Fitness')

    #Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot Performances for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=500,
                         sa_max_iters=500,
                         ga_max_iters=500,
                         mimic_max_iters=500,
                         sa_init_temp=100,
                         sa_exp_decay_rate=0.02,
                         sa_min_temp=0.001,
                         ga_pop_size=100,
                         ga_keep_pct=0.15,
                         mimic_pop_size=300,
                         mimic_keep_pct=0.5,
                         plot_name='TSP',
                         plot_ylabel='Fitness')
コード例 #4
0
def travel_salesman(length, distances, random_seeds):
    """Define and experiment the Travel Salesman optimization problem.

        The Travel Salesman is a famous optimization problem presenting whose
        purpose is to find the shortest tout of N cities and visit each exactly once.

        Args:
           length (int): problem length.
           distances(list of tuples): list of inter-distances between each pair of cities.
           random_seeds (list or ndarray): random seeds for get performances over multiple random runs.

        Returns:
           None.
        """

    # Define Travel Salesman objective function and problem
    tsp_objective = TravellingSales(distances=distances)
    problem = TSPOpt(length=length, fitness_fn=tsp_objective, maximize=False)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=500, sa_max_iters=500, ga_max_iters=50, mimic_max_iters=10,
                          sa_init_temp=100, sa_decay_rates=np.arange(0.005, 0.05, 0.005), sa_min_temp=0.001,
                          ga_pop_size=100, mimic_pop_size=700, ga_keep_pct=0.2, mimic_keep_pct=0.2,
                          pop_sizes=np.arange(100, 1001, 100), keep_pcts=np.arange(0.1, 0.81, 0.1),
                          plot_name='TSP', plot_ylabel='Cost')

    # Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=500, sa_max_iters=500, ga_max_iters=50, mimic_max_iters=10,
                         sa_init_temp=100, sa_exp_decay_rate=0.03, sa_min_temp=0.001,
                         ga_pop_size=100, ga_keep_pct=0.2,
                         mimic_pop_size=700, mimic_keep_pct=0.2,
                         plot_name='TSP', plot_ylabel='Cost')
コード例 #5
0
def four_peaks(length, random_seeds):
    """Define and experiment Four Peaks optimization problem.

        Four Peaks is an optimization problem presenting 2 global optima
        and 2 local optima.

        Args:
           length (int): problem length.
           random_seeds (list or ndarray): random seeds for get performances over multiple random runs.

        Returns:
           None.
        """

    # Define Four Peaks objective function and problem
    four_fitness = FourPeaks(t_pct=0.1)
    problem = DiscreteOpt(length=length, fitness_fn=four_fitness, maximize=True, max_val=2)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=10000, sa_max_iters=10000, ga_max_iters=250, mimic_max_iters=250,
                          sa_init_temp=100, sa_decay_rates=np.arange(0.002, 0.1, 0.002), sa_min_temp=0.001,
                          ga_pop_size=1000, mimic_pop_size=1000, ga_keep_pct=0.1, mimic_keep_pct=0.2,
                          pop_sizes=np.arange(100, 1001, 100), keep_pcts=np.arange(0.1, 0.81, 0.1),
                          plot_name='Four Peaks', plot_ylabel='Fitness')

    # Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=7000, sa_max_iters=7000, ga_max_iters=250, mimic_max_iters=250,
                         sa_init_temp=100, sa_exp_decay_rate=0.02, sa_min_temp=0.001,
                         ga_pop_size=1000, ga_keep_pct=0.1,
                         mimic_pop_size=1000, mimic_keep_pct=0.2,
                         plot_name='Four Peaks', plot_ylabel='Fitness')
コード例 #6
0
def flip_plop(length, random_seeds):
    """Define and experiment Flip Flop optimization problem.

        Flip Flop is an optimization problem whose purpose is to optimize
        the number of alternations in as vector of bits.

        Args:
           length (int): problem length.
           random_seeds (list or ndarray): random seeds for get performances over multiple random runs.

        Returns:
           None.
        """

    # Define Flip Flop objective function and problem
    flip_flop_objective = FlipFlop()
    problem = DiscreteOpt(length=length, fitness_fn=flip_flop_objective, maximize=True, max_val=2)
    problem.set_mimic_fast_mode(True)  # set fast MIMIC

    # Plot optimizations for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for SA, GA and MIMIC')
    ro.plot_optimizations(problem=problem,
                          random_seeds=random_seeds,
                          rhc_max_iters=1000, sa_max_iters=1000, ga_max_iters=250, mimic_max_iters=50,
                          sa_init_temp=100, sa_decay_rates=np.arange(0.05, 2.01, 0.05), sa_min_temp=0.001,
                          ga_pop_size=300, mimic_pop_size=1500, ga_keep_pct=0.2, mimic_keep_pct=0.4,
                          pop_sizes=np.arange(100, 2001, 200), keep_pcts=np.arange(0.1, 0.81, 0.1),
                          plot_name='Flip Flop', plot_ylabel='Fitness')

    # Plot performances for RHC, SA, GA and MIMIC
    print('\nPlot Optimizations for RHC, SA, GA and MIMIC')
    ro.plot_performances(problem=problem,
                         random_seeds=random_seeds,
                         rhc_max_iters=1000, sa_max_iters=1000, ga_max_iters=500, mimic_max_iters=100,
                         sa_init_temp=100, sa_exp_decay_rate=0.3, sa_min_temp=0.001,
                         ga_pop_size=300, ga_keep_pct=0.2,
                         mimic_pop_size=1500, mimic_keep_pct=0.4,
                         plot_name='Flip Flop', plot_ylabel='Fitness')