コード例 #1
0
class ConvThenLinear(_Net):
    def __init__(self, start_shape, stop_shape, depth=2, conv_part=Conv1dAC):
        _Net.__init__(self, start_shape, stop_shape, depth)
        self.conv_part = conv_part(start_shape=start_shape,
                                   stop_shape=stop_shape,
                                   depth=depth,
                                   bias_prob=0.3)
        self.lin_part = LinearAC(start_shape=None,
                                 stop_shape=(10, ),
                                 depth=depth,
                                 bias_prob=0.3)
        self.change_num = IntParam(name="")

    def change_when(self, x):
        self.change_num.unrandomize(val=x)

    def change_random(self):
        self.change_num.randomize(limits=(1, self.depth - 1))

    def generate(self):
        self.change_random()
        t = self.change_num.value
        self.lin_part.depth = self.depth - t
        cp = self.conv_part.generate()[:t]
        self.lin_part.start_shape = cp[-1].out_shape
        lp = self.lin_part.generate()
        return cp + lp
コード例 #2
0
ファイル: res_gen.py プロジェクト: ahgamut/randonet
class ResNetStyle(_Net):
    def __init__(self, start_shape, stop_shape, depth=3):
        _Net.__init__(self, start_shape, stop_shape, depth)
        self.layers.append(Conv2dAC(start_shape, [10, 1, 1], depth))
        self.layers.append(Conv2dThenLinear(start_shape, [10, 1, 1], depth))
        self.change_num = IntParam("", default=1)

    def generate(self):
        z1 = Conv2dAC.ac.val
        Conv2dAC.ac.val = Conv2dAC.ac.choices[2]
        z2 = LinearAC.ac.val
        LinearAC.ac.val = LinearAC.ac.choices[2]
        self.change_num.randomize(limits=(1, self.depth - 2 * self.depth // 3))
        t = self.change_num.value
        cp = self.layers[0].generate(resnet_cover=20)[:t]

        skip_gen = BasicBlock()
        self.change_num.randomize(
            limits=(1, max([1, self.depth - (t + self.depth // 3)]))
        )
        t2 = self.change_num.value

        sp = []
        for i in range(t2):
            sp.append(skip_gen(_in_shape=cp[-1].out_shape))

        self.change_num.randomize(limits=(2, max([2, self.depth - (t + t2)])))
        t3 = self.change_num.value
        self.layers[1].start_shape = sp[-1].out_shape
        self.layers[1].conv_part.start_shape = sp[-1].out_shape
        self.layers[1].depth = t3
        lp = self.layers[1].generate()

        Conv2dAC.ac.val = z1
        LinearAC.ac.val = z2
        return cp + sp + lp