def test__predict__good__disjoint_drop(): """test the predict() method on disjoint validation pairs with the cold_start='drop' option""" model = RankFM(factors=2) model.fit(intx_train_pd_int) scores = model.predict(intx_valid_disjoint, cold_start='drop') shape = scores.shape == (5, ) dtype = scores.dtype == np.float32 nmiss = np.sum(np.isnan(scores).astype(np.int32)) == 0 assert shape and dtype and nmiss
def test__predict__good__train(): """test the predict() method on the training inputs""" model = RankFM(factors=2) model.fit(intx_train_pd_int) scores = model.predict(intx_train_pd_int) shape = scores.shape == (9, ) dtype = scores.dtype == np.float32 nmiss = np.sum(np.isnan(scores).astype(np.int32)) == 0 assert shape and dtype and nmiss