コード例 #1
0
ファイル: scorer.py プロジェクト: wsdm-cup-2017/turnip
 def rank(self):
     X, Y = self.makeFeatures()
     #pdb.set_trace()
     X = np.asarray(X, dtype=np.float32)
     Y = np.asarray(Y, dtype=np.int32)
     X_train, X_test, y_train, y_test = train_test_split(X,
                                                         Y,
                                                         test_size=0.75,
                                                         random_state=0)
     tuned_parameters = [{
         'kernel': ['rbf'],
         'gamma': [1e-3, 1e-2, 1e-1, 1, 10],
         'C': [1e-2, 1e-1, 1, 10, 100, 1000]
     }, {
         'kernel': ['linear'],
         'C': [1, 10, 100, 1000]
     }]
     clf = GridSearchCV(ranking.RankSVM(C=1), tuned_parameters, cv=5)
     clf.fit(X_train, y_train)
     print("Best parameters set found on development set:")
     print(clf.best_params_)
     print("Grid scores on development set:")
     means = clf.cv_results_['mean_test_score']
     stds = clf.cv_results_['std_test_score']
     for mean, std, params in zip(means, stds, clf.cv_results_['params']):
         print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
     be = clf.best_estimator_
コード例 #2
0
ファイル: scorer.py プロジェクト: wsdm-cup-2017/turnip
 def featureSelect(self):
     X, y = self.makeFeatures()
     X = np.asarray(X, dtype=np.float32)
     y = np.asarray(y, dtype=np.int32)[:, 0]
     svc = ranking.RankSVM(kernel='linear', C=10)
     rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2))
     rfecv.fit(X, y)
     print("Optimal number of features : %d" % rfecv.n_features_)
コード例 #3
0
ファイル: scorer.py プロジェクト: wsdm-cup-2017/turnip
 def rankSVM(self):
     X, Y = self.makeFeatures()
     X = np.asarray(X, dtype=np.float32)
     Y = np.asarray(Y, dtype=np.int32)
     y = Y
     group = Y[:, 1]
     gkf = GroupKFold(n_splits=10)
     for train, test in gkf.split(X, y, groups=group):
         svc = ranking.RankSVM(C=1e-1, kernel='rbf', gamma=10)
         svc.fit(X[train], y[train])
         print(svc.score(X[test], y[test]))
コード例 #4
0
ファイル: scorer.py プロジェクト: codez266/turnip
 def svmRankingTrain(self):
     X, Y = self.makeFeatures()
     y = self.setLabel(Y)
     X = np.asarray(X, dtype=np.float64)
     Y = np.asarray(Y, dtype=np.int32)
     group = Y[:, 1]
     X_train, X_test, y_train, y_test = train_test_split(X,
                                                         y,
                                                         test_size=0.65,
                                                         random_state=0)
     svc = ranking.RankSVM(C=1e1, kernel='rbf', gamma=1)
     svc.fit(X_train, y_train)
     y_out = svc.predict(X)
     Y[:, 0] = y_out
     ranks = self.relativeToAbsHalf(X, Y)
     for i, j in enumerate(ranks):
         self.pairs[i].append(j)