コード例 #1
0
def sim_pcrm(times, notion):
    """ solves pcrm times times on randomly generated data
    Returns the time (in seconds) that solving each random instance
    of the problem took as well as the size of the instances
    """
    time, value, bound, no_items, no_pos, no_prop = [], [], [], [], [], []

    for i in range(times):
        p = np.random.randint(low=2, high=20, size=1)[0]
        n = np.random.randint(low=3, high=100, size=1)[0]
        m = math.ceil(np.random.uniform(low=1, high=1.5, size=1) * n)
        viol = 1.5
        #viol = np.random.uniform(low = 1.2, high = 2.0, size = 1)[0]
        pos_imp, item_qual, properties = dg.sim_data(m, n, p, True)
        prop_list = dg.get_prop_list_sim(properties)
        parity_pcrm = dg.parity_pcrm(prop_list, item_qual, notion, viol)
        start = timeit.default_timer()
        rank_pcrm = ra.ip_parity(item_qual, pos_imp, prop_list, parity_pcrm)
        stop = timeit.default_timer()
        elapsed = (stop - start)
        time.append(elapsed)
        value.append(rank_pcrm[2])
        bound.append(viol)
        no_items.append(m)
        no_pos.append(n)
        no_prop.append(p)

    # use bonferonni for multiple comparisons
    dat = np.array([time, value, bound, no_items, no_pos, no_prop]).T
    df = pd.DataFrame(
        dat,
        columns=['time', 'value', 'bound', 'no_items', 'no_pos', 'no_prop'])

    return df
コード例 #2
0
def greedy_approx(times, notion, disjoint):
    '''Solves PCRM using the greedy approximation algorithm
    Returns the approximation factor (as compared to the exact solution from the IP)
    whether the instance was feasible and if the greedy algorithm found a feasible solution'''

    value_factor, feas_ip, feas_greedy, time_ip, time_greedy, viol_coeff = [], [], [], [], [], []
    for i in range(times):
        p = np.random.randint(low=2, high=5, size=1)[0]
        n = np.random.randint(low=10, high=20, size=1)[0]
        m = math.ceil(np.random.uniform(low=1, high=1.5, size=1) * n)
        viol = np.random.uniform(low=1.1, high=1.2, size=1)[0]
        pos_imp, item_qual, properties = dg.sim_data(m, n, p, disjoint)
        prop_list = dg.get_prop_list_sim(properties)
        parity_pcrm = dg.parity_pcrm(prop_list, item_qual, notion, viol)

        start = timeit.default_timer()
        rank_ip = ra.ip_parity(item_qual, pos_imp, prop_list, parity_pcrm)
        stop = timeit.default_timer()
        elapsed_ip = (stop - start)
        start = timeit.default_timer()
        rank_greedy = ra.greedy_parity(item_qual, pos_imp, properties,
                                       parity_pcrm)
        stop = timeit.default_timer()
        elapsed_greedy = (stop - start)
        if rank_ip[2] > 0:
            f_ip = 1
        else:
            f_ip = 0
        if rank_greedy[1] > 0:
            f_greedy = 1
        else:
            f_greedy = 0
        if f_ip == 1 and f_greedy == 1:
            val_fact = rank_ip[2] / rank_greedy[1]
        else:
            val_fact = np.nan

        value_factor.append(val_fact)
        feas_ip.append(f_ip)
        feas_greedy.append(f_greedy)
        time_ip.append(elapsed_ip)
        time_greedy.append(elapsed_greedy)
        viol_coeff.append(viol)

        print(str(i) + ' greedy_approx completed')

    dat = np.array(
        [value_factor, feas_ip, feas_greedy, time_ip, time_greedy,
         viol_coeff]).T
    df = pd.DataFrame(dat,
                      columns=[
                          'value_factor', 'feas_ip', 'feas_greed', 'time_ip',
                          'time_greedy', 'viol_coeff'
                      ])

    return df
コード例 #3
0
def price_of_fairness(times, notion):
    ''' solves the pcrm and compares the value of the fair ranking to the value of the unconstrained solution,
    returns the price of fairness and maximum unfairness of the unconstrained ranking
    as well as information on the instances'''


    price_fair, viol_coeff, unfairness, no_items, no_pos, no_prop = [], [], [], [], [], []

    for i in range(times):
        p = np.random.randint(low=2, high=5, size=1)[0]
        n = np.random.randint(low=10, high=20, size=1)[0]
        m = math.ceil(np.random.uniform(low=1, high=1.5, size=1) * n)
        viol = np.random.uniform(low=1.15, high=1.2, size=1)[0]
        #viol = np.random.uniform(low = 1.2, high = 2.0, size = 1)[0]
        pos_imp, item_qual, properties = dg.sim_data(m, n, p, True)
        prop_list = dg.get_prop_list_sim(properties)
        parity_pcrm = dg.parity_pcrm(prop_list, item_qual, notion, viol)
        rank_pcrm = ra.ip_parity(item_qual, pos_imp, prop_list, parity_pcrm)
        fair = rank_pcrm[2]
        val_mat = dg.get_val_mat(pos_imp, item_qual)

        rank_unc = ra.unconstrained_ranking_matching(val_mat)
        opt = rank_unc[1]
        unc_rank_mat = ra.rank_mat_match(rank_unc[0], m, n)
        unc_rank_list = ra.rank_list_from_mat(unc_rank_mat)
        unfair = ra.max_unfair(unc_rank_list, pos_imp, parity_pcrm / viol,
                               prop_list, viol)
        price = (opt - fair) / opt
        price_fair.append(price)
        viol_coeff.append(viol)
        unfairness.append(unfair)
        no_items.append(m)
        no_pos.append(n)
        no_prop.append(p)

        print(str(i) + ' price of fairness completed')

    # use bonferonni for multiple comparisons
    dat = np.array(
        [price_fair, viol_coeff, unfairness, no_items, no_pos, no_prop]).T
    df = pd.DataFrame(dat,
                      columns=[
                          'price of fairness', 'viol_coeff', 'max_unfairness',
                          'no_items', 'no_pos', 'no_prop'
                      ])

    return df
コード例 #4
0
def pcrm_vs_topk(times, notion):
    """ solves pcrm and topk rm times times on randomly generated data
    Returns the correlation between the solutions to the two problems
    and the information about the instances
    """
    value_factor, corr, sign, no_items, no_pos, no_prop = [], [], [], [], [], []
    for i in range(times):
        p = np.random.randint(low=2, high=5, size=1)[0]
        n = np.random.randint(low=10, high=20, size=1)[0]
        m = math.ceil(np.random.uniform(low=1, high=1.5, size=1) * n)
        viol = np.random.uniform(low=1.1, high=1.2, size=1)[0]
        pos_imp, item_qual, properties = dg.sim_data(m, n, p, True)
        prop_list = dg.get_prop_list_sim(properties)
        parity_topk = dg.parity_topk(prop_list, item_qual, n, notion)
        parity_pcrm = dg.parity_pcrm(prop_list, item_qual, notion, viol)
        rank_topk = ra.greedy_topk(properties, parity_topk, pos_imp, item_qual)
        rank_pcrm = ra.ip_parity(item_qual, pos_imp, prop_list, parity_pcrm)
        rank_list_topk, val_topk = rank_topk[0], rank_topk[1]
        rank_list_pcrm, val_pcrm = rank_pcrm[3], rank_pcrm[2]
        rank_list_pcrm = ra.rank_mat_lp(rank_list_pcrm, m, n)
        rank_list_pcrm = ra.rank_list_from_mat(rank_list_pcrm)
        # return difference in value + spearman rho and maybe size
        rho, p_val = stats.spearmanr(rank_list_topk, rank_list_pcrm)
        if val_topk != 0:
            value_factor.append(val_pcrm / val_topk)
        elif val_pcrm == 0:
            value_factor.append(1)
        else:
            value_factor.append(0)
        corr.append(rho)
        sign.append(p_val)
        no_items.append(m)
        no_pos.append(n)
        no_prop.append(p)

        print(str(i) + ' pcrm_vs_topk completed')

    dat = np.array([value_factor, corr, sign, no_items, no_pos, no_prop]).T
    df = pd.DataFrame(dat,
                      columns=[
                          'value_factor', 'rho', 'p_val', 'no_items', 'no_pos',
                          'no_prop'
                      ])

    return df
コード例 #5
0
def twogroup_sim(one, two, n, notion, viol):

    item_qual, prop_list, properties = sim_twogroup_data(one, two)
    m = len(item_qual)
    exposure = np.zeros(n)
    for j in range(n):
        exposure[j] = 1 / (math.log(j + 2))

    val_mat = dg.get_val_mat(item_qual, exposure)
    unconstrained = ra.unconstrained_ranking_matching(val_mat)
    unconstrained_rank_list = np.arange(0, n)
    unc_val = unconstrained[1]

    dem_parity = dg.parity_pcrm(prop_list, item_qual, notion, viol)
    fair = ra.ip_parity(item_qual, exposure, prop_list, dem_parity)
    fair_rank_mat = ra.rank_mat_lp(fair[3], m, n)
    fair_rank_list = ra.rank_list_from_mat(fair_rank_mat)
    fair_val = fair[2]

    fair_approx = ra.greedy_parity_two(item_qual, exposure, properties,
                                       dem_parity)
    if fair_approx[1] != 0:
        val_fact = fair_val / fair_approx[1]
    else:
        val_fact = np.nan

    if notion == 'demographic':
        r_unfair = ra.dp_ratio(unconstrained_rank_list, exposure, prop_list)
        r_fair = ra.dp_ratio(fair_rank_list, exposure, prop_list)
    elif notion == 'utilitarian':
        r_unfair = ra.dt_ratio(unconstrained_rank_list, exposure, item_qual,
                               prop_list)
        r_fair = ra.dt_ratio(fair_rank_list, exposure, item_qual, prop_list)

    mu_unfair = ra.max_unfair(unconstrained_rank_list, exposure, dem_parity,
                              prop_list, viol)
    mu_fair = ra.max_unfair(fair_rank_list, exposure, dem_parity, prop_list,
                            viol)
    if unc_val == 0:
        pof = 0
    else:
        pof = (unc_val - fair_val) / unc_val

    return pof, r_unfair, r_fair, mu_unfair, mu_fair, one, two, val_fact
コード例 #6
0
prop_prev_user = properties_topic.sum()
prop_util_user = np.matmul(item_qual_topic, properties_topic)
prop_avg_util_user = np.zeros(len(prop_util_user))

for i in range(len(prop_util_user)):
    prop_avg_util_user[i] = prop_util_user[i] / prop_prev_user.iloc[i]

# obtain the unconstrained and fair solutions
# unconstrained
rank_unc = ra.unconstrained_ranking_matching(val_mat)
rank_mat_unc = ra.rank_mat_match(rank_unc[0], m, n)
rank_list_unc = ra.rank_list_from_mat(rank_mat_unc)
unc_val = rank_unc[1]

# pcrm
ip_rank_pcrm = ra.ip_parity(item_qual_topic, pos_imp, prop_list_topic,
                            parity_pcrm_topic)
fair_rank_mat = ra.rank_mat_lp(ip_rank_pcrm[3], m, n)
rank_list_fair_ip = ra.rank_list_from_mat(fair_rank_mat)
fair_ip_val = ip_rank_pcrm[2]

lp_rank_pcrm = ra.lp_parity(item_qual_topic, pos_imp, prop_list_topic,
                            parity_pcrm_topic)
fair_lp_rank_mat = ra.rank_mat_lp(lp_rank_pcrm[3], m, n)
fair_lp_val = lp_rank_pcrm[2]

fair_greedy_pcrm = ra.greedy_parity_two(item_qual_topic, pos_imp,
                                        properties_topic, parity_pcrm_topic)
fair_greedy_pcrm_rank_mat = ra.rank_mat_greedy(fair_greedy_pcrm[0], m, n)
fair_greedy_pcrm_val = fair_greedy_pcrm[1]

# topk