コード例 #1
0
ファイル: conftest.py プロジェクト: wangy1986/rasa
def trained_nlu_model(request):
    cfg = RasaNLUModelConfig({"pipeline": "keyword"})
    trainer = Trainer(cfg)
    td = training_data.load_data(DEFAULT_DATA_PATH)

    trainer.train(td)

    model_path = trainer.persist(NLU_MODEL_PATH)

    nlu_data = data.get_nlu_directory(DEFAULT_DATA_PATH)
    output_path = os.path.join(NLU_MODEL_PATH, NLU_MODEL_NAME)
    new_fingerprint = model.model_fingerprint(NLU_DEFAULT_CONFIG_PATH,
                                              nlu_data=nlu_data)
    model.create_package_rasa(model_path, output_path, new_fingerprint)

    def fin():
        if os.path.exists(NLU_MODEL_PATH):
            shutil.rmtree(NLU_MODEL_PATH)

        if os.path.exists(output_path):
            shutil.rmtree(output_path)

    request.addfinalizer(fin)

    return output_path
コード例 #2
0
ファイル: train.py プロジェクト: zhfneu/rasa_core
def train_nlu(config: Text, nlu_data: Text, output: Text,
              train_path: Optional[Text]) -> Optional["Interpreter"]:
    """Trains a NLU model.

    Args:
        config: Path to the config file for NLU.
        nlu_data: Path to the NLU training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.

    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.

    """
    import rasa_nlu

    _train_path = train_path or tempfile.mkdtemp()
    _, nlu_model, _ = rasa_nlu.train(config, nlu_data, _train_path,
                                     project="",
                                     fixed_model_name="nlu")

    if not train_path:
        nlu_data = data.get_nlu_directory(nlu_data)
        output_path = create_output_path(output, prefix="nlu-")
        new_fingerprint = model.model_fingerprint(config, nlu_data=nlu_data)
        model.create_package_rasa(_train_path, output_path, new_fingerprint)
        print_success("Your Rasa NLU model is trained and saved at '{}'."
                      "".format(output_path))

    return nlu_model
コード例 #3
0
def test_get_nlu_directory(project):
    data_dir = os.path.join(project, "data")
    nlu_directory = data.get_nlu_directory([data_dir])

    nlu_files = os.listdir(nlu_directory)

    assert len(nlu_files) == 1
    assert nlu_files[0].endswith("nlu.md")
コード例 #4
0
    async def train(request):
        # if set will not generate a model name but use the passed one
        model_name = request.args.get("model", None)

        try:
            model_config, data_dict = extract_data_and_config(request)
        except Exception as e:
            logger.debug(traceback.format_exc())
            raise ErrorResponse(
                500,
                "ServerError",
                "An unexpected error occurred.",
                details={"error": str(e)},
            )

        data_file = dump_to_data_file(data_dict)
        config_file = dump_to_data_file(model_config, "_config")

        try:
            path_to_model = await data_router.start_train_process(
                data_file, RasaNLUModelConfig(model_config), model_name)

            # store trained model as tar.gz file
            output_path = create_model_path(model_name, path_to_model)

            nlu_data = data.get_nlu_directory(data_file)
            new_fingerprint = model.model_fingerprint(config_file,
                                                      nlu_data=nlu_data)
            model.create_package_rasa(path_to_model, output_path,
                                      new_fingerprint)
            logger.info("Rasa NLU model trained and persisted to '{}'.".format(
                output_path))

            await data_router.load_model(output_path)

            return await response.file(output_path)
        except MaxWorkerProcessError as e:
            raise ErrorResponse(
                403,
                "NoFreeProcess",
                "No process available for training.",
                details={"error": str(e)},
            )
        except InvalidModelError as e:
            raise ErrorResponse(
                404,
                "ModelNotFound",
                "Model '{}' not found.".format(model_name),
                details={"error": str(e)},
            )
        except TrainingException as e:
            logger.debug(traceback.format_exc())
            raise ErrorResponse(
                500,
                "ServerError",
                "An unexpected error occurred.",
                details={"error": str(e)},
            )
コード例 #5
0
ファイル: test.py プロジェクト: delldu/Rasa
def test_nlu(args: argparse.Namespace) -> None:
    from rasa import data
    from rasa.test import compare_nlu_models, perform_nlu_cross_validation, test_nlu

    nlu_data = cli_utils.get_validated_path(args.nlu, "nlu", DEFAULT_DATA_PATH)
    nlu_data = data.get_nlu_directory(nlu_data)
    output = args.out or DEFAULT_RESULTS_PATH

    io_utils.create_directory(output)

    if args.config is not None and len(args.config) == 1:
        args.config = os.path.abspath(args.config[0])
        if os.path.isdir(args.config):
            config_dir = args.config
            config_files = os.listdir(config_dir)
            args.config = [
                os.path.join(config_dir, os.path.abspath(config))
                for config in config_files
            ]

    if isinstance(args.config, list):
        logger.info(
            "Multiple configuration files specified, running nlu comparison mode."
        )

        config_files = []
        for file in args.config:
            try:
                validation_utils.validate_yaml_schema(
                    io_utils.read_file(file),
                    CONFIG_SCHEMA_FILE,
                    show_validation_errors=False,
                )
                config_files.append(file)
            except validation_utils.InvalidYamlFileError:
                logger.debug(
                    "Ignoring file '{}' as it is not a valid config file.".
                    format(file))
                continue

        compare_nlu_models(
            configs=config_files,
            nlu=nlu_data,
            output=output,
            runs=args.runs,
            exclusion_percentages=args.percentages,
        )
    elif args.cross_validation:
        logger.info("Test model using cross validation.")
        config = cli_utils.get_validated_path(args.config, "config",
                                              DEFAULT_CONFIG_PATH)
        perform_nlu_cross_validation(config, nlu_data, output, vars(args))
    else:
        model_path = cli_utils.get_validated_path(args.model, "model",
                                                  DEFAULT_MODELS_PATH)

        test_nlu(model_path, nlu_data, output, vars(args))
コード例 #6
0
ファイル: data.py プロジェクト: kushal1212/Demo_Bot
def split_nlu_data(args):
    from rasa.nlu.training_data.loading import load_data

    data_path = get_validated_path(args.nlu, "nlu", DEFAULT_DATA_PATH)
    data_path = data.get_nlu_directory(data_path)
    nlu_data = load_data(data_path)
    train, test = nlu_data.train_test_split(args.training_fraction)

    train.persist(args.out, filename="training_data.json")
    test.persist(args.out, filename="test_data.json")
コード例 #7
0
def test_get_nlu_file(project):
    data_file = os.path.join(project, "data/nlu.md")
    nlu_directory = data.get_nlu_directory(data_file)

    nlu_files = os.listdir(nlu_directory)

    original = load_data(data_file)
    copied = load_data(nlu_directory)

    assert nlu_files[0].endswith("nlu.md")
    assert original.intent_examples == copied.intent_examples
コード例 #8
0
ファイル: train.py プロジェクト: anusalva-md/rasa
def train_nlu(config: Text, nlu_data: Text, output: Text,
              train_path: Optional[Text]) -> Optional[Text]:
    """Trains a NLU model.

    Args:
        config: Path to the config file for NLU.
        nlu_data: Path to the NLU training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.

    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.

    """
    import rasa.nlu.train

    config = get_valid_config(config, CONFIG_MANDATORY_KEYS_NLU)

    if not train_path:
        # training NLU only hence the training files still have to be selected
        skill_imports = SkillSelector.load(config)
        nlu_data_directory = data.get_nlu_directory(nlu_data, skill_imports)
    else:
        nlu_data_directory = nlu_data

    if not os.listdir(nlu_data_directory):
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model.")
        return

    _train_path = train_path or tempfile.mkdtemp()

    print_color("Start training NLU model ...", color=bcolors.OKBLUE)
    _, nlu_model, _ = rasa.nlu.train(config,
                                     nlu_data_directory,
                                     _train_path,
                                     fixed_model_name="nlu")
    print_color("Done.", color=bcolors.OKBLUE)

    if not train_path:
        output_path = create_output_path(output, prefix="nlu-")
        new_fingerprint = model.model_fingerprint(config,
                                                  nlu_data=nlu_data_directory)
        model.create_package_rasa(_train_path, output_path, new_fingerprint)
        print_success(
            "Your Rasa NLU model is trained and saved at '{}'.".format(
                output_path))

        return output_path

    return _train_path
コード例 #9
0
ファイル: show.py プロジェクト: jayd2446/rasa_stack
def show_stories(args: argparse.Namespace):
    import rasa_core.visualize

    args.config = args.config
    args.url = None

    args.stories = data.get_core_directory(args.stories)
    if os.path.exists(DEFAULT_DATA_PATH):
        args.nlu_data = data.get_nlu_directory(DEFAULT_DATA_PATH)

    rasa_core.visualize(args.config, args.domain, args.stories, args.nlu_data,
                        args.output, args.max_history)
コード例 #10
0
ファイル: visualize.py プロジェクト: Cesarcuna/dockerhub
def visualize_stories(args: argparse.Namespace):
    import rasa.core.visualize

    loop = asyncio.get_event_loop()

    args.stories = data.get_core_directory(args.stories)
    if args.nlu is None and os.path.exists(DEFAULT_DATA_PATH):
        args.nlu = data.get_nlu_directory(DEFAULT_DATA_PATH)

    loop.run_until_complete(
        rasa.core.visualize(args.config, args.domain, args.stories, args.nlu,
                            args.out, args.max_history))
コード例 #11
0
ファイル: data.py プロジェクト: sysang/rasa
def split_nlu_data(args: argparse.Namespace) -> None:
    from rasa.nlu.training_data.loading import load_data
    from rasa.nlu.training_data.util import get_file_format

    data_path = rasa.cli.utils.get_validated_path(args.nlu, "nlu", DEFAULT_DATA_PATH)
    data_path = data.get_nlu_directory(data_path)

    nlu_data = load_data(data_path)
    fformat = get_file_format(data_path)

    train, test = nlu_data.train_test_split(args.training_fraction, args.random_seed)

    train.persist(args.out, filename=f"training_data.{fformat}")
    test.persist(args.out, filename=f"test_data.{fformat}")
コード例 #12
0
ファイル: test.py プロジェクト: jayceyxc/rasa
def test_nlu(args: argparse.Namespace) -> None:
    from rasa.test import test_nlu, test_nlu_with_cross_validation

    model_path = get_validated_path(args.model, "model", DEFAULT_MODELS_PATH)

    nlu_data = get_validated_path(args.nlu, "nlu", DEFAULT_DATA_PATH)
    nlu_data = data.get_nlu_directory(nlu_data)

    if model_path:
        test_nlu(model_path, nlu_data, vars(args))
    else:
        print ("No model specified. Model will be trained using cross validation.")
        config = get_validated_path(args.config, "config", DEFAULT_CONFIG_PATH)

        test_nlu_with_cross_validation(config, nlu_data, args.folds)
コード例 #13
0
ファイル: train.py プロジェクト: bheemaiaha/rasa
def train_nlu(
    config: Text,
    nlu_data: Text,
    output: Text,
    train_path: Optional[Text] = None,
    fixed_model_name: Optional[Text] = None,
    uncompress: bool = False,
) -> Optional[Text]:
    """Trains an NLU model.

    Args:
        config: Path to the config file for NLU.
        nlu_data: Path to the NLU training data.
        output: Output path.
        train_path: If `None` the model will be trained in a temporary
            directory, otherwise in the provided directory.
        fixed_model_name: Name of the model to be stored.
        uncompress: If `True` the model will not be compressed.

    Returns:
        If `train_path` is given it returns the path to the model archive,
        otherwise the path to the directory with the trained model files.

    """
    config = _get_valid_config(config, CONFIG_MANDATORY_KEYS_NLU)

    # training NLU only hence the training files still have to be selected
    skill_imports = SkillSelector.load(config)
    nlu_data_directory = data.get_nlu_directory(nlu_data, skill_imports)

    if not os.listdir(nlu_data_directory):
        print_error(
            "No NLU data given. Please provide NLU data in order to train "
            "a Rasa NLU model."
        )
        return

    return _train_nlu_with_validated_data(
        config=config,
        nlu_data_directory=nlu_data_directory,
        output=output,
        train_path=train_path,
        fixed_model_name=fixed_model_name,
        uncompress=uncompress,
    )
コード例 #14
0
ファイル: data.py プロジェクト: quickyue/rasa
def split_nlu_data(args):
    from rasa.nlu.training_data.loading import load_data
    from rasa.nlu.training_data.util import get_file_format

    data_path = get_validated_path(args.nlu, "nlu", DEFAULT_DATA_PATH)
    data_path = data.get_nlu_directory(data_path)

    nlu_data = load_data(data_path)
    fformat = get_file_format(data_path)

    train, test = nlu_data.train_test_split(args.training_fraction)

    train.persist(args.out,
                  filename="training_data.{}".format(fformat),
                  fformat=fformat)
    test.persist(args.out,
                 filename="test_data.{}".format(fformat),
                 fformat=fformat)
コード例 #15
0
ファイル: data.py プロジェクト: zuiwanting/rasa
def split_nlu_data(args: argparse.Namespace) -> None:
    """Load data from a file path and split the NLU data into test and train examples.

    Args:
        args: Commandline arguments
    """
    from rasa.nlu.training_data.loading import load_data
    from rasa.nlu.training_data.util import get_file_format

    data_path = rasa.cli.utils.get_validated_path(args.nlu, "nlu",
                                                  DEFAULT_DATA_PATH)
    data_path = data.get_nlu_directory(data_path)

    nlu_data = load_data(data_path)
    fformat = get_file_format(data_path)

    train, test = nlu_data.train_test_split(args.training_fraction,
                                            args.random_seed)

    train.persist(args.out, filename=f"training_data.{fformat}")
    test.persist(args.out, filename=f"test_data.{fformat}")