コード例 #1
0
ファイル: test_model.py プロジェクト: zuiwanting/rasa
def test_get_model_from_directory_with_subdirectories(trained_rasa_model: Text,
                                                      tmp_path: Path):
    unpacked = get_model(trained_rasa_model)
    unpacked_core, unpacked_nlu = get_model_subdirectories(unpacked)

    assert unpacked_core
    assert unpacked_nlu

    with pytest.raises(ModelNotFound):
        get_model_subdirectories(str(tmp_path))  # temp path should be empty
コード例 #2
0
ファイル: test_model.py プロジェクト: souvikg10/rasa_nlu
def test_get_model_from_directory_with_subdirectories(
        trained_rasa_model, tmpdir_factory: TempdirFactory):
    unpacked = get_model(trained_rasa_model)
    unpacked_core, unpacked_nlu = get_model_subdirectories(unpacked)

    assert unpacked_core
    assert unpacked_nlu

    directory = tmpdir_factory.mktemp("empty_model_dir").strpath
    with pytest.raises(ModelNotFound):
        get_model_subdirectories(directory)
コード例 #3
0
ファイル: run.py プロジェクト: ravishankr/rasa
async def load_agent_on_start(
    model_path: Text,
    endpoints: AvailableEndpoints,
    remote_storage: Optional[Text],
    app: Sanic,
    loop: AbstractEventLoop,
):
    """Load an agent.

    Used to be scheduled on server start
    (hence the `app` and `loop` arguments)."""

    # noinspection PyBroadException
    try:
        with model.get_model(model_path) as unpacked_model:
            _, nlu_model = model.get_model_subdirectories(unpacked_model)
            _interpreter = NaturalLanguageInterpreter.create(endpoints.nlu or nlu_model)
    except Exception:
        logger.debug(f"Could not load interpreter from '{model_path}'.")
        _interpreter = None

    _broker = EventBroker.create(endpoints.event_broker)
    _tracker_store = TrackerStore.create(endpoints.tracker_store, event_broker=_broker)
    _lock_store = LockStore.create(endpoints.lock_store)

    model_server = endpoints.model if endpoints and endpoints.model else None

    try:
        app.agent = await agent.load_agent(
            model_path,
            model_server=model_server,
            remote_storage=remote_storage,
            interpreter=_interpreter,
            generator=endpoints.nlg,
            tracker_store=_tracker_store,
            lock_store=_lock_store,
            action_endpoint=endpoints.action,
        )
    except Exception as e:
        rasa.shared.utils.io.raise_warning(
            f"The model at '{model_path}' could not be loaded. " f"Error: {e}"
        )
        app.agent = None

    if not app.agent:
        rasa.shared.utils.io.raise_warning(
            "Agent could not be loaded with the provided configuration. "
            "Load default agent without any model."
        )
        app.agent = Agent(
            interpreter=_interpreter,
            generator=endpoints.nlg,
            tracker_store=_tracker_store,
            action_endpoint=endpoints.action,
            model_server=model_server,
            remote_storage=remote_storage,
        )

    logger.info("Rasa server is up and running.")
    return app.agent
コード例 #4
0
async def test_core(model: Text,
                    stories: Text,
                    endpoints: Optional[Text] = None,
                    output: Text = DEFAULT_RESULTS_PATH):
    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)
    model = cli_utils.get_validated_path(model, "model", DEFAULT_MODELS_PATH)
    try:
        unpacked_model = get_model(model)
    except ModelNotFound:
        print_error(
            "Unable to test: could not find a model. Use 'rasa train' to train a "
            "Rasa model and provide it via the '--model' argument.")
        return

    core_path, nlu_path = get_model_subdirectories(unpacked_model)

    if not core_path:
        print_error(
            "Unable to test: could not find a Core model. Use 'rasa train' to train a "
            "Rasa model and provide it via the '--model' argument.")

    _interpreter = RegexInterpreter()

    _agent = Agent.load(unpacked_model, interpreter=_interpreter)

    return await rasa.core.test(stories, _agent, out_directory=output)
コード例 #5
0
def shell_nlu(args: argparse.Namespace):
    from rasa.cli.utils import get_validated_path
    from rasa.constants import DEFAULT_MODELS_PATH
    from rasa.model import get_model, get_model_subdirectories
    import rasa.nlu.run

    args.connector = "cmdline"

    model = get_validated_path(args.model, "model", DEFAULT_MODELS_PATH)

    try:
        model_path = get_model(model)
    except ModelNotFound:
        print_error(
            "No model found. Train a model before running the "
            "server using `rasa train nlu`."
        )
        return

    _, nlu_model = get_model_subdirectories(model_path)

    if not os.path.exists(nlu_model):
        print_error(
            "No NLU model found. Train a model before running the "
            "server using `rasa train nlu`."
        )
        return

    rasa.nlu.run.run_cmdline(nlu_model)
コード例 #6
0
ファイル: agent.py プロジェクト: mdheller/rasa
def _load_and_set_updated_model(agent: "Agent", model_directory: Text,
                                fingerprint: Text):
    """Load the persisted model into memory and set the model on the agent."""

    logger.debug(f"Found new model with fingerprint {fingerprint}. Loading...")

    core_path, nlu_path = get_model_subdirectories(model_directory)

    if nlu_path:
        from rasa.core.interpreter import RasaNLUInterpreter

        interpreter = RasaNLUInterpreter(model_directory=nlu_path)
    else:
        interpreter = (agent.interpreter if agent.interpreter is not None else
                       RegexInterpreter())

    domain = None
    if core_path:
        domain_path = os.path.join(os.path.abspath(core_path),
                                   DEFAULT_DOMAIN_PATH)
        domain = Domain.load(domain_path)

    try:
        policy_ensemble = None
        if core_path:
            policy_ensemble = PolicyEnsemble.load(core_path)
        agent.update_model(domain, policy_ensemble, fingerprint, interpreter,
                           model_directory)
        logger.debug("Finished updating agent to new model.")
    except Exception:
        logger.exception("Failed to load policy and update agent. "
                         "The previous model will stay loaded instead.")
コード例 #7
0
def test_get_model_from_directory_nlu_only(trained_rasa_model):
    unpacked = get_model(trained_rasa_model)
    shutil.rmtree(os.path.join(unpacked, DEFAULT_CORE_SUBDIRECTORY_NAME))
    unpacked_core, unpacked_nlu = get_model_subdirectories(unpacked)

    assert not unpacked_core
    assert unpacked_nlu
コード例 #8
0
ファイル: test.py プロジェクト: praneethgb/rasa
def _create_data_generator(
    resource_name: Text,
    agent: "Agent",
    max_stories: Optional[int] = None,
    use_conversation_test_files: bool = False,
) -> "TrainingDataGenerator":
    from rasa.shared.core.generator import TrainingDataGenerator
    from rasa.shared.constants import DEFAULT_DOMAIN_PATH
    from rasa.model import get_model_subdirectories

    core_model = None
    if agent.model_directory:
        core_model, _ = get_model_subdirectories(agent.model_directory)

    if core_model and os.path.exists(
            os.path.join(core_model, DEFAULT_DOMAIN_PATH)):
        domain_path = os.path.join(core_model, DEFAULT_DOMAIN_PATH)
    else:
        domain_path = None

    test_data_importer = TrainingDataImporter.load_from_dict(
        training_data_paths=[resource_name], domain_path=domain_path)
    if use_conversation_test_files:
        story_graph = test_data_importer.get_conversation_tests()
    else:
        story_graph = test_data_importer.get_stories()

    return TrainingDataGenerator(
        story_graph,
        agent.domain,
        use_story_concatenation=False,
        augmentation_factor=0,
        tracker_limit=max_stories,
    )
コード例 #9
0
ファイル: server.py プロジェクト: jayceyxc/rasa
    async def evaluate_intents(request: Request):
        """Evaluate intents against a Rasa model."""
        validate_request_body(
            request,
            "You must provide some nlu data in the request body in order to "
            "evaluate your model.",
        )

        nlu_data = rasa.utils.io.create_temporary_file(request.body,
                                                       mode="w+b")
        data_path = os.path.abspath(nlu_data)

        if not os.path.exists(app.agent.model_directory):
            raise ErrorResponse(409, "Conflict",
                                "Loaded model file not found.")

        model_directory = app.agent.model_directory
        _, nlu_model = get_model_subdirectories(model_directory)

        try:
            evaluation = run_evaluation(data_path, nlu_model)
            return response.json(evaluation)
        except Exception as e:
            logger.debug(traceback.format_exc())
            raise ErrorResponse(
                500,
                "TestingError",
                "An unexpected error occurred during evaluation. Error: {}".
                format(e),
            )
コード例 #10
0
async def load_agent_on_start(
    model_path: Text,
    endpoints: AvailableEndpoints,
    remote_storage: Optional[Text],
    app: Sanic,
    loop: Text,
):
    """Load an agent.

    Used to be scheduled on server start
    (hence the `app` and `loop` arguments)."""
    from rasa.core import broker

    try:
        unpacked_model_context = get_model(model_path)
        if unpacked_model_context:
            with unpacked_model_context as unpacked_model:
                _, nlu_model = get_model_subdirectories(unpacked_model)
                _interpreter = NaturalLanguageInterpreter.create(
                    nlu_model, endpoints.nlu
                )
        else:
            raise RuntimeError("No model found at '{}'.".format(model_path))

    except Exception:
        logger.debug("Could not load interpreter from '{}'.".format(model_path))
        _interpreter = None

    _broker = broker.from_endpoint_config(endpoints.event_broker)
    _tracker_store = TrackerStore.find_tracker_store(
        None, endpoints.tracker_store, _broker
    )

    model_server = endpoints.model if endpoints and endpoints.model else None

    app.agent = await load_agent(
        model_path,
        model_server=model_server,
        remote_storage=remote_storage,
        interpreter=_interpreter,
        generator=endpoints.nlg,
        tracker_store=_tracker_store,
        action_endpoint=endpoints.action,
    )

    if not app.agent:
        logger.warning(
            "Agent could not be loaded with the provided configuration. "
            "Load default agent without any model."
        )
        app.agent = Agent(
            interpreter=_interpreter,
            generator=endpoints.nlg,
            tracker_store=_tracker_store,
            action_endpoint=endpoints.action,
            model_server=model_server,
            remote_storage=remote_storage,
        )

    return app.agent
コード例 #11
0
async def load_agent_on_start(
    model_path: Text,
    endpoints: AvailableEndpoints,
    remote_storage: Optional[Text],
    app: Sanic,
    loop: Text,
):
    """Load an agent.

    Used to be scheduled on server start
    (hence the `app` and `loop` arguments)."""
    import rasa.core.brokers.utils as broker_utils

    # noinspection PyBroadException
    # bf mod
    try:
        with model.get_model(model_path) as unpacked_model:
            _, nlu_models = model.get_model_subdirectories(unpacked_model)
            _interpreters = {}
            for lang, nlu_model_path in nlu_models.items():
                _interpreters[lang] = NaturalLanguageInterpreter.create(
                    nlu_model_path, endpoints.nlu)
    except Exception:
        logger.debug(f"Could not load interpreter from '{model_path}'.")
        _interpreters = {}
    # /bf mod

    _broker = broker_utils.from_endpoint_config(endpoints.event_broker)
    _tracker_store = TrackerStore.find_tracker_store(None,
                                                     endpoints.tracker_store,
                                                     _broker)
    _lock_store = LockStore.find_lock_store(endpoints.lock_store)

    model_server = endpoints.model if endpoints and endpoints.model else None

    app.agent = await agent.load_agent(
        model_path,
        model_server=model_server,
        remote_storage=remote_storage,
        interpreters=_interpreters,
        generator=endpoints.nlg,
        tracker_store=_tracker_store,
        lock_store=_lock_store,
        action_endpoint=endpoints.action,
    )

    if not app.agent:
        warnings.warn(
            "Agent could not be loaded with the provided configuration. "
            "Load default agent without any model.")
        app.agent = Agent(
            interpreters=_interpreters,
            generator=endpoints.nlg,
            tracker_store=_tracker_store,
            action_endpoint=endpoints.action,
            model_server=model_server,
            remote_storage=remote_storage,
        )

    return app.agent
コード例 #12
0
ファイル: interactive.py プロジェクト: suryatmodulus/rasa
def perform_interactive_learning(
    args: argparse.Namespace, zipped_model: Text, file_importer: TrainingDataImporter
) -> None:
    """Performs interactive learning.

    Args:
        args: Namespace arguments.
        zipped_model: Path to zipped model.
        file_importer: File importer which provides the training data and model config.
    """
    from rasa.core.train import do_interactive_learning

    args.model = zipped_model

    with model.unpack_model(zipped_model) as model_path:
        args.core, args.nlu = model.get_model_subdirectories(model_path)
        if args.core is None:
            rasa.shared.utils.cli.print_error_and_exit(
                "Can not run interactive learning on an NLU-only model."
            )

        args.endpoints = rasa.cli.utils.get_validated_path(
            args.endpoints, "endpoints", DEFAULT_ENDPOINTS_PATH, True
        )

        do_interactive_learning(args, file_importer)
コード例 #13
0
ファイル: shell.py プロジェクト: suryatmodulus/rasa
def shell(args: argparse.Namespace) -> None:
    from rasa.cli.utils import get_validated_path
    from rasa.shared.constants import DEFAULT_MODELS_PATH
    from rasa.model import get_model, get_model_subdirectories

    args.connector = "cmdline"

    model = get_validated_path(args.model, "model", DEFAULT_MODELS_PATH)

    try:
        model_path = get_model(model)
    except ModelNotFound:
        print_error(
            "No model found. Train a model before running the "
            "server using `rasa train`."
        )
        return

    core_model, nlu_model = get_model_subdirectories(model_path)

    if not core_model:
        import rasa.nlu.run

        telemetry.track_shell_started("nlu")

        rasa.nlu.run.run_cmdline(nlu_model)
    else:
        import rasa.cli.run

        telemetry.track_shell_started("rasa")

        rasa.cli.run.run(args)
コード例 #14
0
ファイル: model_training.py プロジェクト: ducminh-phan/rasa
async def _nlu_model_for_finetuning(
    model_to_finetune: Text,
    file_importer: TrainingDataImporter,
    finetuning_epoch_fraction: float = 1.0,
    called_from_combined_training: bool = False,
) -> Optional[Interpreter]:

    path_to_archive = model.get_model_for_finetuning(model_to_finetune)
    if not path_to_archive:
        return None

    rasa.shared.utils.cli.print_info(
        f"Loading NLU model from {path_to_archive} for finetuning...", )
    with model.unpack_model(path_to_archive) as unpacked:
        _, old_nlu = model.get_model_subdirectories(unpacked)
        new_fingerprint = await model.model_fingerprint(file_importer)
        old_fingerprint = model.fingerprint_from_path(unpacked)
        if not model.can_finetune(
                old_fingerprint,
                new_fingerprint,
                nlu=True,
                core=called_from_combined_training,
        ):
            rasa.shared.utils.cli.print_error_and_exit(
                "NLU model can not be finetuned.")

        config = await file_importer.get_config()
        model_to_finetune = Interpreter.load(
            old_nlu,
            new_config=config,
            finetuning_epoch_fraction=finetuning_epoch_fraction,
        )
        if not model_to_finetune:
            return None
    return model_to_finetune
コード例 #15
0
def shell(args: argparse.Namespace):
    from rasa.cli.utils import get_validated_path
    from rasa.constants import DEFAULT_MODELS_PATH
    from rasa.model import get_model, get_model_subdirectories

    args.connector = "cmdline"

    model = get_validated_path(args.model, "model", DEFAULT_MODELS_PATH)
    model_path = get_model(model)
    if not model_path:
        print_error(
            "No model found. Train a model before running the "
            "server using `rasa train`."
        )
        return

    core_model, nlu_model = get_model_subdirectories(model_path)

    if not os.path.exists(core_model):
        import rasa.nlu.run

        rasa.nlu.run.run_cmdline(nlu_model)
    else:
        import rasa.cli.run

        rasa.cli.run.run(args)
コード例 #16
0
ファイル: agent.py プロジェクト: laoyin/easy_rasa
def _load_and_set_updated_model(
    agent: "Agent", model_directory: Text, fingerprint: Text
) -> None:
    """Load the persisted model into memory and set the model on the agent.

    Args:
        agent: Instance of `Agent` to update with the new model.
        model_directory: Rasa model directory.
        fingerprint: Fingerprint of the supplied model at `model_directory`.
    """
    logger.debug(f"Found new model with fingerprint {fingerprint}. Loading...")

    core_path, nlu_path = get_model_subdirectories(model_directory)

    try:
        interpreter = _load_interpreter(agent, nlu_path)
        domain, policy_ensemble = _load_domain_and_policy_ensemble(core_path)

        agent.update_model(
            domain, policy_ensemble, fingerprint, interpreter, model_directory
        )

        logger.debug("Finished updating agent to new model.")
    except Exception as e:
        logger.exception(
            f"Failed to update model. The previous model will stay loaded instead. "
            f"Error: {e}"
        )
コード例 #17
0
def test_get_model_from_directory_nlu_only(trained_model):
    unpacked = get_model(trained_model)
    shutil.rmtree(os.path.join(unpacked, "core"))
    unpacked_core, unpacked_nlu = get_model_subdirectories(unpacked)

    assert not unpacked_core
    assert unpacked_nlu
コード例 #18
0
def create_agent(model: Text, endpoints: Text = None) -> 'Agent':
    from rasa_core.interpreter import RasaNLUInterpreter
    from rasa_core.tracker_store import TrackerStore
    from rasa_core import broker
    from rasa_core.utils import AvailableEndpoints

    core_path, nlu_path = get_model_subdirectories(model)
    _endpoints = AvailableEndpoints.read_endpoints(endpoints)

    _interpreter = None
    if os.path.exists(nlu_path):
        _interpreter = RasaNLUInterpreter(model_directory=nlu_path)
    else:
        _interpreter = None
        logging.info("No NLU model found. Running without NLU.")

    _broker = broker.from_endpoint_config(_endpoints.event_broker)

    _tracker_store = TrackerStore.find_tracker_store(None,
                                                     _endpoints.tracker_store,
                                                     _broker)

    return Agent.load(core_path,
                      generator=_endpoints.nlg,
                      tracker_store=_tracker_store,
                      action_endpoint=_endpoints.action)
コード例 #19
0
def test_parse():
    # model = get_validated_path(args.model, "model", DEFAULT_MODELS_PATH)
    model = get_validated_path(None, "model", DEFAULT_MODELS_PATH)
    model_path = get_model(model)
    if not model_path:
        print_error("No model found. Train a model before running the "
                    "server using `rasa train nlu`.")
        exit(1)

    _, nlu_model = get_model_subdirectories(model_path)

    if not os.path.exists(nlu_model):
        print_error("No NLU model found. Train a model before running the "
                    "server using `rasa train nlu`.")
        exit(1)

    # input shell
    # rasa.nlu.run.run_cmdline(nlu_model)
    print("model_path is {},nlu_model is {}".format(model_path, nlu_model))
    print("please input your text to parse")
    # message = input().strip()
    # message = "这款衣服有货吗"
    message = "身高170体重140"
    interpreter = Interpreter.load(nlu_model, component_builder)
    result = interpreter.parse(message)
    print(json.dumps(result, indent=2))
コード例 #20
0
ファイル: agent.py プロジェクト: yang198876/rasa
    def load(
        cls,
        model_path: Union[Text, Path],
        interpreter: Optional[NaturalLanguageInterpreter] = None,
        generator: Union[EndpointConfig, NaturalLanguageGenerator] = None,
        tracker_store: Optional[TrackerStore] = None,
        lock_store: Optional[LockStore] = None,
        action_endpoint: Optional[EndpointConfig] = None,
        model_server: Optional[EndpointConfig] = None,
        remote_storage: Optional[Text] = None,
        path_to_model_archive: Optional[Text] = None,
    ) -> "Agent":
        """Load a persisted model from the passed path."""
        try:
            if not model_path:
                raise ModelNotFound("No path specified.")
            if not os.path.exists(model_path):
                raise ModelNotFound(f"No file or directory at '{model_path}'.")
            if os.path.isfile(model_path):
                model_path = get_model(str(model_path))
        except ModelNotFound as e:
            raise ModelNotFound(
                f"You are trying to load a model from '{model_path}', "
                f"which is not possible. \n"
                f"The model path should be a 'tar.gz' file or a directory "
                f"containing the various model files in the sub-directories "
                f"'core' and 'nlu'. \n\n"
                f"If you want to load training data instead of a model, use "
                f"`agent.load_data(...)` instead. {e}"
            )

        core_model, nlu_model = get_model_subdirectories(model_path)

        if not interpreter and nlu_model:
            interpreter = rasa.core.interpreter.create_interpreter(nlu_model)

        domain = None
        ensemble = None

        if core_model:
            domain = Domain.load(os.path.join(core_model, DEFAULT_DOMAIN_PATH))
            ensemble = PolicyEnsemble.load(core_model) if core_model else None

            # ensures the domain hasn't changed between test and train
            domain.compare_with_specification(core_model)

        return cls(
            domain=domain,
            policies=ensemble,
            interpreter=interpreter,
            generator=generator,
            tracker_store=tracker_store,
            lock_store=lock_store,
            action_endpoint=action_endpoint,
            model_directory=model_path,
            model_server=model_server,
            remote_storage=remote_storage,
            path_to_model_archive=path_to_model_archive,
        )
コード例 #21
0
ファイル: server.py プロジェクト: mufasil/rasa-for-botfront
    async def evaluate_intents(request: Request):
        """Evaluate intents against a Rasa model."""
        validate_request_body(
            request,
            "You must provide some nlu data in the request body in order to "
            "evaluate your model.",
        )

        eval_agent = app.agent

        model_path = request.args.get("model", None)
        if model_path:
            model_server = app.agent.model_server
            if model_server is not None:
                model_server.url = model_path
            eval_agent = await _load_agent(model_path, model_server,
                                           app.agent.remote_storage)

        nlu_data = rasa.utils.io.create_temporary_file(request.body,
                                                       mode="w+b")
        data_path = os.path.abspath(nlu_data)

        if not eval_agent.model_directory or not os.path.exists(
                eval_agent.model_directory):
            raise ErrorResponse(409, "Conflict",
                                "Loaded model file not found.")

        model_directory = eval_agent.model_directory
        _, nlu_model = model.get_model_subdirectories(model_directory)

        try:
            # bf >
            language = request.args.get("language", None)
            evaluation = run_evaluation(
                data_path,
                nlu_model.get(language),
                errors=True,
                output_directory=model_directory,
            )

            for classifier in evaluation.get("entity_evaluation", {}):
                entity_errors_file = os.path.join(model_directory,
                                                  f"{classifier}_errors.json")
                if os.path.isfile(entity_errors_file):
                    import json

                    entity_errors = json.loads(
                        rasa.utils.io.read_file(entity_errors_file))
                    evaluation["entity_evaluation"][classifier][
                        "predictions"] = entity_errors
            # </ bf
            return response.json(evaluation)
        except Exception as e:
            logger.debug(traceback.format_exc())
            raise ErrorResponse(
                500,
                "TestingError",
                f"An unexpected error occurred during evaluation. Error: {e}",
            )
コード例 #22
0
def test_create_interpreter(parameters, trained_nlu_model):
    obj = parameters["obj"]
    if obj == "trained_nlu_model":
        _, obj = get_model_subdirectories(get_model(trained_nlu_model))

    interpreter = NaturalLanguageInterpreter.create(obj, parameters["endpoint"])

    assert isinstance(interpreter, parameters["type"])
コード例 #23
0
ファイル: test.py プロジェクト: whitewolfkings/rasa
def test_core(
    model: Optional[Text] = None,
    stories: Optional[Text] = None,
    endpoints: Optional[Text] = None,
    output: Text = DEFAULT_RESULTS_PATH,
    kwargs: Optional[Dict] = None,
):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa.nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if kwargs is None:
        kwargs = {}

    if output:
        nlu_utils.create_dir(output)

    unpacked_model = get_model(model)
    if unpacked_model is None:
        print_error(
            "Unable to test: could not find a model. Use 'rasa train' to train a "
            "Rasa model."
        )
        return

    core_path, nlu_path = get_model_subdirectories(unpacked_model)

    if not os.path.exists(core_path):
        print_error(
            "Unable to test: could not find a Core model. Use 'rasa train' to "
            "train a model."
        )

    use_e2e = kwargs["e2e"] if "e2e" in kwargs else False

    _interpreter = RegexInterpreter()
    if use_e2e:
        if os.path.exists(nlu_path):
            _interpreter = NaturalLanguageInterpreter.create(nlu_path, _endpoints.nlu)
        else:
            print_warning(
                "No NLU model found. Using default 'RegexInterpreter' for end-to-end "
                "evaluation."
            )

    _agent = Agent.load(unpacked_model, interpreter=_interpreter)

    kwargs = minimal_kwargs(kwargs, rasa.core.test, ["stories", "agent"])

    loop = asyncio.get_event_loop()
    loop.run_until_complete(
        rasa.core.test(stories, _agent, out_directory=output, **kwargs)
    )
コード例 #24
0
ファイル: model_training.py プロジェクト: ducminh-phan/rasa
def _interpreter_from_previous_model(
    old_model_zip_path: Optional[Text],
) -> Optional[NaturalLanguageInterpreter]:
    if not old_model_zip_path:
        return None

    with model.unpack_model(old_model_zip_path) as unpacked:
        _, old_nlu = model.get_model_subdirectories(unpacked)
        return rasa.core.interpreter.create_interpreter(old_nlu)
コード例 #25
0
def test_create_interpreter(parameters, trained_nlu_model):
    obj = parameters["obj"]
    if obj == "trained_nlu_model":
        _, obj = get_model_subdirectories(get_model(trained_nlu_model))

    interpreter = rasa.core.interpreter.create_interpreter(
        parameters["endpoint"] or obj)

    assert isinstance(interpreter, parameters["type"])
コード例 #26
0
def test_core(
    model: Optional[Text] = None,
    stories: Optional[Text] = None,
    endpoints: Optional[Text] = None,
    output: Text = DEFAULT_RESULTS_PATH,
    model_path: Optional[Text] = None,
    kwargs: Optional[Dict] = None,
):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa.nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if kwargs is None:
        kwargs = {}

    if output:
        nlu_utils.create_dir(output)

    if os.path.isfile(model):
        model_path = get_model(model)

    if model_path:
        # Single model: Normal evaluation
        loop = asyncio.get_event_loop()
        model_path = get_model(model)
        core_path, nlu_path = get_model_subdirectories(model_path)

        if os.path.exists(core_path) and os.path.exists(nlu_path):
            _interpreter = NaturalLanguageInterpreter.create(nlu_path, _endpoints.nlu)

            _agent = Agent.load(core_path, interpreter=_interpreter)

            kwargs = minimal_kwargs(kwargs, rasa.core.test, ["stories", "agent"])

            loop.run_until_complete(
                rasa.core.test(stories, _agent, out_directory=output, **kwargs)
            )
        else:
            logger.warning(
                "Not able to test. Make sure both models, core and "
                "nlu, are available."
            )

    else:
        from rasa.core.test import compare, plot_curve

        compare(model, stories, output)

        story_n_path = os.path.join(model, "num_stories.json")

        number_of_stories = core_utils.read_json_file(story_n_path)
        plot_curve(output, number_of_stories)
コード例 #27
0
 def _load_model(self, model_name):
     model_path = os.path.join("models", model_name)
     tempdir = tempfile.mkdtemp()
     unpacked_model = unpack_model(model_path, tempdir)
     _, nlu_model = get_model_subdirectories(unpacked_model)
     with self.lock:
         interpreter = Interpreter.load(nlu_model, self.component_builder)
     
     return interpreter
コード例 #28
0
ファイル: agent.py プロジェクト: zijiannc/RASA_NLU
    def load(
        cls,
        model_path: Text,
        interpreter: Optional[NaturalLanguageInterpreter] = None,
        generator: Union[EndpointConfig, NaturalLanguageGenerator] = None,
        tracker_store: Optional[TrackerStore] = None,
        action_endpoint: Optional[EndpointConfig] = None,
        model_server: Optional[EndpointConfig] = None,
        remote_storage: Optional[Text] = None,
    ) -> "Agent":
        """Load a persisted model from the passed path."""
        try:
            if not model_path:
                raise ModelNotFound("No path specified.")
            elif not os.path.exists(model_path):
                raise ModelNotFound(
                    "No file or directory at '{}'.".format(model_path))
            elif os.path.isfile(model_path):
                model_path = get_model(model_path)
        except ModelNotFound:
            raise ValueError(
                "You are trying to load a MODEL from '{}', which is not possible. \n"
                "The model path should be a 'tar.gz' file or a directory "
                "containing the various model files in the sub-directories 'core' "
                "and 'nlu'. \n\nIf you want to load training data instead of "
                "a model, use `agent.load_data(...)` instead.".format(
                    model_path))

        core_model, nlu_model = get_model_subdirectories(model_path)

        if not interpreter and os.path.exists(nlu_model):
            interpreter = NaturalLanguageInterpreter.create(nlu_model)

        domain = None
        ensemble = None

        if os.path.exists(core_model):
            domain = Domain.load(os.path.join(core_model, DEFAULT_DOMAIN_PATH))
            ensemble = PolicyEnsemble.load(core_model) if core_model else None

            # ensures the domain hasn't changed between test and train
            domain.compare_with_specification(core_model)

        return cls(
            domain=domain,
            policies=ensemble,
            interpreter=interpreter,
            generator=generator,
            tracker_store=tracker_store,
            action_endpoint=action_endpoint,
            model_directory=model_path,
            model_server=model_server,
            remote_storage=remote_storage,
        )
コード例 #29
0
 def get_interpreter(model_path):
     from rasa.model import get_model, get_model_subdirectories
     from rasa.core.interpreter import create_interpreter
     try:
         with get_model(model_path) as unpacked_model:
             _, nlu_model = get_model_subdirectories(unpacked_model)
             _interpreter = create_interpreter(nlu_model)
     except Exception:
         logger.debug(f"Could not load interpreter from '{model_path}'.")
         _interpreter = None
     return _interpreter
コード例 #30
0
ファイル: run.py プロジェクト: kushal1212/Demo_Bot
def run(model: Text,
        endpoints: Text,
        connector: Text = None,
        credentials: Text = None,
        **kwargs: Dict):
    """Runs a Rasa model.

    Args:
        model: Path to model archive.
        endpoints: Path to endpoints file.
        connector: Connector which should be use (overwrites `credentials`
        field).
        credentials: Path to channel credentials file.
        **kwargs: Additional arguments which are passed to
        `rasa.core.run.serve_application`.

    """
    import rasa.core.run
    import rasa.nlu.run
    from rasa.core.utils import AvailableEndpoints

    model_path = get_model(model)
    if not model_path:
        logger.error("No model found. Train a model before running the "
                     "server using `rasa train`.")
        return

    core_path, nlu_path = get_model_subdirectories(model_path)
    _endpoints = AvailableEndpoints.read_endpoints(endpoints)

    if not connector and not credentials:
        channel = "cmdline"
        logger.info("No chat connector configured, falling back to the "
                    "command line. Use `rasa configure channel` to connect"
                    "the bot to e.g. facebook messenger.")
    else:
        channel = connector

    if os.path.exists(core_path):
        kwargs = minimal_kwargs(kwargs, rasa.core.run.serve_application)
        rasa.core.run.serve_application(core_path,
                                        nlu_path,
                                        channel=channel,
                                        credentials_file=credentials,
                                        endpoints=_endpoints,
                                        **kwargs)

    # TODO: No core model was found, run only nlu server for now
    elif os.path.exists(nlu_path):
        rasa.nlu.run.run_cmdline(nlu_path)

    shutil.rmtree(model_path)