コード例 #1
0
ファイル: test_selectors.py プロジェクト: zuiwanting/rasa
def test_train_selector(pipeline, component_builder, tmpdir):
    # use data that include some responses
    training_data = load_data("data/examples/rasa/demo-rasa.md")
    training_data_responses = load_data(
        "data/examples/rasa/demo-rasa-responses.md")
    training_data = training_data.merge(training_data_responses)

    nlu_config = RasaNLUModelConfig({"language": "en", "pipeline": pipeline})

    trainer = Trainer(nlu_config)
    trainer.train(training_data)

    persisted_path = trainer.persist(tmpdir)

    assert trainer.pipeline

    loaded = Interpreter.load(persisted_path, component_builder)
    parsed = loaded.parse("hello")

    assert loaded.pipeline
    assert parsed is not None
    assert (parsed.get("response_selector").get("all_retrieval_intents")) == [
        "chitchat"
    ]
    assert (parsed.get("response_selector").get("default").get("response").get(
        "intent_response_key")) is not None
    assert (parsed.get("response_selector").get("default").get("response").get(
        "response_templates")) is not None

    ranking = parsed.get("response_selector").get("default").get("ranking")
    assert ranking is not None

    for rank in ranking:
        assert rank.get("confidence") is not None
        assert rank.get("intent_response_key") is not None
コード例 #2
0
ファイル: test_selectors.py プロジェクト: sysang/rasa
def test_train_selector(pipeline, component_builder, tmpdir):
    # use data that include some responses
    td = load_data("data/examples/rasa/demo-rasa.md")
    td_responses = load_data("data/examples/rasa/demo-rasa-responses.md")
    td = td.merge(td_responses)

    nlu_config = RasaNLUModelConfig({"language": "en", "pipeline": pipeline})

    trainer = Trainer(nlu_config)
    trainer.train(td)

    persisted_path = trainer.persist(tmpdir)

    assert trainer.pipeline

    loaded = Interpreter.load(persisted_path, component_builder)
    parsed = loaded.parse("hello")

    assert loaded.pipeline
    assert parsed is not None
    assert (parsed.get(RESPONSE_SELECTOR_PROPERTY_NAME).get("default").get(
        "full_retrieval_intent")) is not None

    ranking = parsed.get(RESPONSE_SELECTOR_PROPERTY_NAME).get("default").get(
        "ranking")
    assert ranking is not None

    for rank in ranking:
        assert rank.get("name") is not None
        assert rank.get("confidence") is not None
        assert rank.get("full_retrieval_intent") is not None
コード例 #3
0
def test_train_response_selector(component_builder, tmpdir):
    td = load_data("data/examples/rasa/demo-rasa.md")
    td_responses = load_data("data/examples/rasa/demo-rasa-responses.md")
    td = td.merge(td_responses)
    td.fill_response_phrases()

    nlu_config = config.load(
        "sample_configs/config_embedding_intent_response_selector.yml"
    )

    trainer = Trainer(nlu_config)
    trainer.train(td)

    persisted_path = trainer.persist(tmpdir)

    assert trainer.pipeline
    loaded = Interpreter.load(persisted_path, component_builder)
    assert loaded.pipeline
    assert loaded.parse("hello") is not None
    assert loaded.parse("Hello today is Monday, again!") is not None
コード例 #4
0
def test_train_selector(pipeline, component_builder, tmpdir):
    # use data that include some responses
    td = load_data("data/examples/rasa/demo-rasa.md")
    td_responses = load_data("data/examples/rasa/demo-rasa-responses.md")
    td = td.merge(td_responses)
    td.fill_response_phrases()

    nlu_config = RasaNLUModelConfig({"language": "en", "pipeline": pipeline})

    trainer = Trainer(nlu_config)
    trainer.train(td)

    persisted_path = trainer.persist(tmpdir)

    assert trainer.pipeline

    loaded = Interpreter.load(persisted_path, component_builder)

    assert loaded.pipeline
    assert loaded.parse("hello") is not None