コード例 #1
0
ファイル: test_test.py プロジェクト: ChenHuaYou/rasa
async def test_testing_with_utilizing_retrieval_intents(
        response_selector_agent: Agent, response_selector_test_stories: Path,
        tmp_path: Path):
    result = await rasa.core.test.test(
        stories=response_selector_test_stories,
        agent=response_selector_agent,
        e2e=True,
        out_directory=str(tmp_path),
        disable_plotting=True,
        warnings=False,
    )
    failed_stories_path = tmp_path / "failed_test_stories.yml"
    failed_stories = read_yaml(read_file(failed_stories_path, "utf-8"))
    # check that the intent is shown correctly in the failed test stories file
    target_intents = {
        "test 0": "chitchat/ask_name",
        "test 1": "chitchat/ask_name",
        "test 2": "chitchat",
        "test 3": "chitchat",
    }
    for story in failed_stories["stories"]:
        test_name = story["story"].split("-")[0].strip()
        assert story["steps"][0]["intent"] == target_intents[test_name]
    # check that retrieval intent for actions is retrieved correctly
    # and only when it's needed.
    target_actions = {
        "utter_chitchat": "utter_chitchat",
        "utter_chitchat/ask_name": "utter_chitchat/ask_name",
        "utter_chitchat/ask_weather": "utter_chitchat/ask_name",
        "utter_goodbye": "utter_chitchat/ask_name",
    }
    predicted_actions = result["actions"][::2]
    for predicted_action in predicted_actions:
        assert (target_actions[predicted_action["action"]] ==
                predicted_action["predicted"])
コード例 #2
0
    def is_markdown_nlg_file(filename: Union[Text, Path]) -> bool:
        """Checks if given file contains NLG training data.

        Args:
            filename: Path to the training data file.

        Returns:
            `True` if file contains NLG training data, `False` otherwise.
        """
        content = io_utils.read_file(filename)
        return re.search(NLG_MARKDOWN_MARKER_REGEX, content) is not None
コード例 #3
0
def json_unpickle(file_name: Union[Text, Path]) -> Any:
    """Unpickle an object from file using json.

    Args:
        file_name: the file to load the object from

    Returns: the object
    """
    import jsonpickle.ext.numpy as jsonpickle_numpy
    import jsonpickle

    jsonpickle_numpy.register_handlers()

    file_content = read_file(file_name)
    return jsonpickle.loads(file_content)
コード例 #4
0
def read_config_file(filename: Text) -> Dict[Text, Any]:
    """Parses a yaml configuration file. Content needs to be a dictionary

    Args:
        filename: The path to the file which should be read.
    """
    content = read_yaml(read_file(filename))

    if content is None:
        return {}
    elif isinstance(content, dict):
        return content
    else:
        raise ValueError("Tried to load invalid config file '{}'. "
                         "Expected a key value mapping but found {}"
                         ".".format(filename, type(content)))