コード例 #1
0
def create_griddata_from_array(
        data: numpy.array, grid_wcs: WCS, projection_wcs: WCS,
        polarisation_frame: PolarisationFrame) -> GridData:
    """ Create a griddata from an array and wcs's
    
    The griddata has axes [chan, pol, z, y, x] where z, y, x are spatial axes in either sky or Fourier plane. The
    order in the WCS is reversed so the grid_WCS describes UU, VV, WW, STOKES, FREQ axes
    
    Griddata holds the original sky plane projection in the projection_wcs.

    :param data: Numpy.array
    :param grid_wcs: Grid world coordinate system
    :param projection_wcs: Projection world coordinate system
    :param polarisation_frame: Polarisation Frame
    :return: GridData
    
    """
    fgriddata = GridData()
    fgriddata.polarisation_frame = polarisation_frame

    fgriddata.data = data
    fgriddata.grid_wcs = grid_wcs.deepcopy()
    fgriddata.projection_wcs = projection_wcs.deepcopy()

    if griddata_sizeof(fgriddata) >= 1.0:
        log.debug(
            "create_griddata_from_array: created %s image of shape %s, size %.3f (GB)"
            % (fgriddata.data.dtype, str(
                fgriddata.shape), griddata_sizeof(fgriddata)))

    assert isinstance(fgriddata, GridData), "Type is %s" % type(fgriddata)
    return fgriddata
コード例 #2
0
def grid_visibility_weight_to_griddata(vis, griddata: GridData, cf):
    """Grid Visibility weight onto a GridData

    :param vis: Visibility to be gridded
    :param griddata: GridData
    :return: GridData
    """
    assert isinstance(vis, Visibility), vis
    assert vis.polarisation_frame == griddata.polarisation_frame

    nchan, npol, nz, ny, nx = griddata.shape
    sumwt = numpy.zeros([nchan, npol])
    pu_grid, pu_offset, pv_grid, pv_offset, pwg_grid, pwg_fraction, pwc_grid, pwc_fraction, pfreq_grid = \
        convolution_mapping_visibility(vis, griddata, vis.frequency, cf)
    _, _, _, _, _, gv, gu = cf.shape
    coords = zip(vis.flagged_imaging_weight, pfreq_grid, pu_grid, pv_grid, pwg_grid)
    griddata.data[...] = 0.0

    real_gd = numpy.real(griddata.data)
    for vwt, chan, xx, yy, zzg in coords:
        real_gd[chan, :, zzg, yy, xx] += vwt
        sumwt[chan, :] += vwt

    griddata.data = real_gd.astype("complex")

    return griddata, sumwt
コード例 #3
0
def grid_blockvisibility_weight_to_griddata(vis, griddata: GridData, cf):
    """Grid BlockVisibility weight onto a GridData

    :param vis: BlockVisibility to be gridded
    :param griddata: GridData
    :param cf: Convolution function
    :return: GridData
    """
    assert isinstance(vis, BlockVisibility), vis
    assert vis.polarisation_frame == griddata.polarisation_frame

    nchan, npol, nz, ny, nx = griddata.shape
    sumwt = numpy.zeros([nchan, npol])

    _, _, _, _, _, gv, gu = cf.shape
    vis_to_im = numpy.round(
        griddata.grid_wcs.sub([5]).wcs_world2pix(vis.frequency, 0)[0]).astype('int')

    griddata.data[...] = 0.0
    real_gd = numpy.real(griddata.data)

    nrows, nants, _, nvchan, nvpol = vis.vis.shape

    # Transpose to get row varying fastest
    fwtt = vis.flagged_imaging_weight.reshape([nrows * nants * nants, nvchan, nvpol]).T

    for vchan in range(nvchan):
        imchan = vis_to_im[vchan]
        pu_grid, pu_offset, pv_grid, pv_offset, pwg_grid, _, _, _ = \
            convolution_mapping_blockvisibility(vis, griddata, vis.frequency[vchan], cf)
        for pol in range(nvpol):
            for row in range(nrows * nants * nants):
                real_gd[imchan, pol, pwg_grid[row], pv_grid[row], pu_grid[row]] += fwtt[
                    pol, vchan, row]
                sumwt[imchan, pol] += fwtt[pol, vchan, row]

    griddata.data = real_gd.astype("complex")

    return griddata, sumwt
コード例 #4
0
def copy_griddata(gd):
    """ Copy griddata
    
    :param gd:
    :return:
    """
    assert isinstance(gd, GridData), gd
    newgd = GridData()
    newgd.polarisation_frame = gd.polarisation_frame
    newgd.data = copy.deepcopy(gd.data)
    if gd.grid_wcs is None:
        newgd.grid_wcs = None
    else:
        newgd.grid_wcs = copy.deepcopy(gd.grid_wcs)
    if gd.projection_wcs is None:
        newgd.projection_wcs = None
    else:
        newgd.projection_wcs = copy.deepcopy(gd.projection_wcs)
    if griddata_sizeof(newgd) >= 1.0:
        log.debug("copy_image: copied %s image of shape %s, size %.3f (GB)" %
                  (newgd.data.dtype, str(newgd.shape), griddata_sizeof(newgd)))
    assert type(newgd) == GridData
    return newgd