コード例 #1
0
    def clip(self):
        """ Clip images based on bounds provided
        Implementation is borrowed from
        https://github.com/brendan-ward/rasterio/blob/e3687ce0ccf8ad92844c16d913a6482d5142cf48/rasterio/rio/convert.py
        """

        self.output("Clipping", normal=True)

        # create new folder for clipped images
        path = check_create_folder(join(self.scene_path, 'clipped'))

        try:
            temp_bands = copy(self.bands)
            temp_bands.append('QA')
            for i, band in enumerate(temp_bands):
                band_name = self._get_full_filename(band)
                band_path = join(self.scene_path, band_name)

                self.output("Band %s" % band,
                            normal=True,
                            color='green',
                            indent=1)
                with rasterio.open(band_path) as src:
                    bounds = transform_bounds(
                        {
                            'proj': 'longlat',
                            'ellps': 'WGS84',
                            'datum': 'WGS84',
                            'no_defs': True
                        }, src.crs, *self.bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        bounds = adjust_bounding_box(src.bounds, bounds)

                    window = src.window(*bounds)

                    out_kwargs = src.meta.copy()
                    out_kwargs.update({
                        'driver': 'GTiff',
                        'height': window[0][1] - window[0][0],
                        'width': window[1][1] - window[1][0],
                        'transform': src.window_transform(window)
                    })

                    with rasterio.open(join(path, band_name), 'w',
                                       **out_kwargs) as out:
                        out.write(src.read(window=window))

            # Copy MTL to the clipped folder
            copyfile(join(self.scene_path, self.scene + '_MTL.txt'),
                     join(path, self.scene + '_MTL.txt'))

            return path

        except IOError as e:
            exit(e.message, 1)
コード例 #2
0
ファイル: image.py プロジェクト: GEO-IASS/landsat-util
    def clip(self):
        """ Clip images based on bounds provided
        Implementation is borrowed from
        https://github.com/brendan-ward/rasterio/blob/e3687ce0ccf8ad92844c16d913a6482d5142cf48/rasterio/rio/convert.py
        """

        self.output("Clipping", normal=True)

        # create new folder for clipped images
        path = check_create_folder(join(self.scene_path, 'clipped'))

        try:
            temp_bands = copy(self.bands)
            temp_bands.append('QA')
            for i, band in enumerate(temp_bands):
                band_name = self._get_full_filename(band)
                band_path = join(self.scene_path, band_name)

                self.output("Band %s" % band, normal=True, color='green', indent=1)
                with rasterio.open(band_path) as src:
                    bounds = transform_bounds(
                        {
                            'proj': 'longlat',
                            'ellps': 'WGS84',
                            'datum': 'WGS84',
                            'no_defs': True
                        },
                        src.crs,
                        *self.bounds
                    )

                    if disjoint_bounds(bounds, src.bounds):
                        bounds = adjust_bounding_box(src.bounds, bounds)

                    window = src.window(*bounds)

                    out_kwargs = src.meta.copy()
                    out_kwargs.update({
                        'driver': 'GTiff',
                        'height': window[0][1] - window[0][0],
                        'width': window[1][1] - window[1][0],
                        'transform': src.window_transform(window)
                    })

                    with rasterio.open(join(path, band_name), 'w', **out_kwargs) as out:
                        out.write(src.read(window=window))

            # Copy MTL to the clipped folder
            copyfile(join(self.scene_path, self.scene + '_MTL.txt'), join(path, self.scene + '_MTL.txt'))

            return path

        except IOError as e:
            exit(e.message, 1)
コード例 #3
0
def bbox_intersection(bounds1, bounds2):
    if disjoint_bounds(bounds1, bounds2):
        raise Exception("Bounds are disjoint, no interseciton exists")
    
    bbox = BoundingBox(
                left=max(bounds1.left, bounds2.left),
                right=min(bounds1.right, bounds2.right),
                top=min(bounds1.top, bounds2.top),
                bottom=max(bounds1.bottom, bounds2.bottom)
            )

    return bbox
コード例 #4
0
 def list_files(self, time:pd.Timestamp) -> list:
     out = []
     if time in self.times:
         time = pd.Timestamp(f'{time.year}-{time.month}-01')
         time_pattern = time.strftime('%Y%m%d')
         files = self.paths.src.ls(recursive=True, include=['JD.tif', time_pattern],
                             exclude=['.xml'])
         # Find windows joint with region bounding box
         for f in files:
             data = open_tif(f)
             if not disjoint_bounds(data.bounds, self.region.bbox):
                 out.append(f)
     return out
コード例 #5
0
    def _clip_bounds(self, bounds):
        if disjoint_bounds(bounds, self.raster.bounds):
            raise Exception("Bounds are disjoint, no interseciton exists")

        # Get the new bounds as a window in the original raster
        bounds_window = rasterio.windows.from_bounds(*bounds, transform=self.raster.transform)
        bounds_window = bounds_window.intersection(self.window)

        self.window = bounds_window.round_lengths(op='ceil')
        self.height = int(self.window.height)
        self.width = int(self.window.width)
        self.transform = rasterio.windows.transform(self.window, self.transform)

        self._update_profile()
コード例 #6
0
def clip_raster(raster, dst_bounds):
    src = read_raster(raster)
    src_bounds = src.bounds

    if disjoint_bounds(src_bounds, dst_bounds):
        msg = 'Raster bounds {} are not covered by clipping bounds {}'.format(src_bounds, dst_bounds)
        raise ValueError(msg)

    window = src.window(*dst_bounds)
    window = window.round_lengths(op='ceil')
    transform = src.window_transform(window)
    data = src.read(window=window, out_shape=(src.count, window.height, window.width))

    src.close()
    return data, transform
コード例 #7
0
def clip(
    ctx,
    files,
    output,
    bounds,
    like,
    driver,
    nodata,
    projection,
    overwrite,
    creation_options,
    with_complement,
):
    """Clips a raster using projected or geographic bounds.

    The values of --bounds are presumed to be from the coordinate
    reference system of the input dataset unless the --geographic option
    is used, in which case the values may be longitude and latitude
    bounds. Either JSON, for example "[west, south, east, north]", or
    plain text "west south east north" representations of a bounding box
    are acceptable.

    If using --like, bounds will automatically be transformed to match
    the coordinate reference system of the input.

    Datasets with non-rectilinear geo transforms (i.e. with rotation
    and/or shear) may not be cropped using this command. They must be
    processed with rio-warp.

    Examples
    --------
    $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax

    $ rio clip input.tif output.tif --like template.tif

    """
    from rasterio.warp import transform_bounds

    with ctx.obj['env']:

        output, files = resolve_inout(files=files, output=output, overwrite=overwrite)
        input = files[0]

        with rasterio.open(input) as src:
            if not src.transform.is_rectilinear:
                raise click.BadParameter(
                    "Non-rectilinear rasters (i.e. with rotation or shear) cannot be clipped"
                )

            if bounds:
                if projection == 'geographic':
                    bounds = transform_bounds(CRS.from_epsg(4326), src.crs, *bounds)
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter('must overlap the extent of '
                                             'the input raster',
                                             param='--bounds',
                                             param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter('must overlap the extent of '
                                                 'the input raster',
                                                 param='--like',
                                                 param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            bounds_window = src.window(*bounds)

            if not with_complement:
                bounds_window = bounds_window.intersection(
                    Window(0, 0, src.width, src.height)
                )

            # Get the window with integer height
            # and width that contains the bounds window.
            out_window = bounds_window.round_lengths(op='ceil')

            height = int(out_window.height)
            width = int(out_window.width)

            out_kwargs = src.profile

            if driver:
                out_kwargs["driver"] = driver

            if nodata is not None:
                out_kwargs["nodata"] = nodata

            out_kwargs.update({
                'height': height,
                'width': width,
                'transform': src.window_transform(out_window)})

            out_kwargs.update(**creation_options)

            if "blockxsize" in out_kwargs and int(out_kwargs["blockxsize"]) > width:
                del out_kwargs["blockxsize"]
                logger.warning(
                    "Blockxsize removed from creation options to accomodate small output width"
                )
            if "blockysize" in out_kwargs and int(out_kwargs["blockysize"]) > height:
                del out_kwargs["blockysize"]
                logger.warning(
                    "Blockysize removed from creation options to accomodate small output height"
                )

            with rasterio.open(output, "w", **out_kwargs) as out:
                out.write(
                    src.read(
                        window=out_window,
                        out_shape=(src.count, height, width),
                        boundless=True,
                        masked=True,
                    )
                )
コード例 #8
0
def rasterize(
        ctx,
        files,
        output,
        driver,
        like,
        bounds,
        dimensions,
        res,
        src_crs,
        all_touched,
        default_value,
        fill,
        prop,
        overwrite,
        nodata,
        creation_options):
    """Rasterize GeoJSON into a new or existing raster.

    If the output raster exists, rio-rasterize will rasterize feature
    values into all bands of that raster.  The GeoJSON is assumed to be
    in the same coordinate reference system as the output unless
    --src-crs is provided.

    --default_value or property values when using --property must be
    using a data type valid for the data type of that raster.

    If a template raster is provided using the --like option, the affine
    transform and data type from that raster will be used to create the
    output.  Only a single band will be output.

    The GeoJSON is assumed to be in the same coordinate reference system
    unless --src-crs is provided.

    --default_value or property values when using --property must be
    using a data type valid for the data type of that raster.

    --driver, --bounds, --dimensions, --res, --nodata are ignored when
    output exists or --like raster is provided

    If the output does not exist and --like raster is not provided, the
    input GeoJSON will be used to determine the bounds of the output
    unless provided using --bounds.

    --dimensions or --res are required in this case.

    If --res is provided, the bottom and right coordinates of bounds are
    ignored.

    Note
    ----

    The GeoJSON is not projected to match the coordinate reference
    system of the output or --like rasters at this time.  This
    functionality may be added in the future.

    """

    from rasterio.crs import CRS
    from rasterio.features import rasterize
    from rasterio.features import bounds as calculate_bounds

    output, files = resolve_inout(
        files=files, output=output, overwrite=overwrite)

    bad_param = click.BadParameter('invalid CRS.  Must be an EPSG code.',
                                   ctx, param=src_crs, param_hint='--src_crs')
    has_src_crs = src_crs is not None
    try:
        src_crs = CRS.from_string(src_crs) if has_src_crs else CRS.from_string('EPSG:4326')
    except CRSError:
        raise bad_param

    # If values are actually meant to be integers, we need to cast them
    # as such or rasterize creates floating point outputs
    if default_value == int(default_value):
        default_value = int(default_value)
    if fill == int(fill):
        fill = int(fill)

    with ctx.obj['env']:

        def feature_value(feature):
            if prop and 'properties' in feature:
                return feature['properties'].get(prop, default_value)
            return default_value

        with click.open_file(files.pop(0) if files else '-') as gj_f:
            geojson = json.loads(gj_f.read())
        if 'features' in geojson:
            geometries = []
            for f in geojson['features']:
                geometries.append((f['geometry'], feature_value(f)))
        elif 'geometry' in geojson:
            geometries = ((geojson['geometry'], feature_value(geojson)), )
        else:
            raise click.BadParameter('Invalid GeoJSON', param=input,
                                     param_hint='input')

        geojson_bounds = geojson.get('bbox', calculate_bounds(geojson))

        if rasterio.shutil.exists(output):
            with rasterio.open(output, 'r+') as out:
                if has_src_crs and src_crs != out.crs:
                    raise click.BadParameter('GeoJSON does not match crs of '
                                             'existing output raster',
                                             param='input', param_hint='input')

                if disjoint_bounds(geojson_bounds, out.bounds):
                    click.echo("GeoJSON outside bounds of existing output "
                               "raster. Are they in different coordinate "
                               "reference systems?",
                               err=True)

                meta = out.meta

                result = rasterize(
                    geometries,
                    out_shape=(meta['height'], meta['width']),
                    transform=meta.get('affine', meta['transform']),
                    all_touched=all_touched,
                    dtype=meta.get('dtype', None),
                    default_value=default_value,
                    fill=fill)

                for bidx in range(1, meta['count'] + 1):
                    data = out.read(bidx, masked=True)
                    # Burn in any non-fill pixels, and update mask accordingly
                    ne = result != fill
                    data[ne] = result[ne]
                    if data.mask.any():
                        data.mask[ne] = False
                    out.write(data, indexes=bidx)

        else:
            if like is not None:
                template_ds = rasterio.open(like)

                if has_src_crs and src_crs != template_ds.crs:
                    raise click.BadParameter('GeoJSON does not match crs of '
                                             '--like raster',
                                             param='input', param_hint='input')

                if disjoint_bounds(geojson_bounds, template_ds.bounds):
                    click.echo("GeoJSON outside bounds of --like raster. "
                               "Are they in different coordinate reference "
                               "systems?",
                               err=True)

                kwargs = template_ds.profile
                kwargs['count'] = 1
                kwargs['transform'] = template_ds.transform

                template_ds.close()

            else:
                bounds = bounds or geojson_bounds

                if src_crs.is_geographic:
                    if (bounds[0] < -180 or bounds[2] > 180 or
                            bounds[1] < -80 or bounds[3] > 80):
                        raise click.BadParameter(
                            "Bounds are beyond the valid extent for "
                            "EPSG:4326.",
                            ctx, param=bounds, param_hint='--bounds')

                if dimensions:
                    width, height = dimensions
                    res = (
                        (bounds[2] - bounds[0]) / float(width),
                        (bounds[3] - bounds[1]) / float(height)
                    )

                else:
                    if not res:
                        raise click.BadParameter(
                            'pixel dimensions are required',
                            ctx, param=res, param_hint='--res')

                    elif len(res) == 1:
                        res = (res[0], res[0])

                    width = max(int(ceil((bounds[2] - bounds[0]) /
                                float(res[0]))), 1)
                    height = max(int(ceil((bounds[3] - bounds[1]) /
                                 float(res[1]))), 1)

                kwargs = {
                    'count': 1,
                    'crs': src_crs,
                    'width': width,
                    'height': height,
                    'transform': Affine(res[0], 0, bounds[0], 0, -res[1],
                                        bounds[3]),
                    'driver': driver
                }

            kwargs.update(**creation_options)

            if nodata is not None:
                kwargs['nodata'] = nodata

            result = rasterize(
                geometries,
                out_shape=(kwargs['height'], kwargs['width']),
                transform=kwargs['transform'],
                all_touched=all_touched,
                dtype=kwargs.get('dtype', None),
                default_value=default_value,
                fill=fill)

            if 'dtype' not in kwargs:
                kwargs['dtype'] = result.dtype

            with rasterio.open(output, 'w', **kwargs) as out:
                out.write(result, indexes=1)
コード例 #9
0
def rasterize(
        geojson,
        output,
        like=None,
        bounds=None,
        dimensions=None,
        res=None,
        src_crs=None,
        all_touched=None,
        default_value=1,
        fill=0,
        prop=None,
        force_overwrite=None,
        creation_options={},
        driver='GTiff'):

    from rasterio._base import is_geographic_crs, is_same_crs
    from rasterio.features import rasterize
    from rasterio.features import bounds as calculate_bounds

    has_src_crs = src_crs is not None
    src_crs = src_crs or 'EPSG:4326'

    # If values are actually meant to be integers, we need to cast them
    # as such or rasterize creates floating point outputs
    if default_value == int(default_value):
        default_value = int(default_value)
    if fill == int(fill):
        fill = int(fill)

    with rasterio.drivers():

        def feature_value(feature):
            if prop and 'properties' in feature:
                return feature['properties'].get(prop, default_value)
            return default_value

        if 'features' in geojson:
            geometries = []
            for f in geojson['features']:
                geometries.append((f['geometry'], feature_value(f)))
        elif 'geometry' in geojson:
            geometries = ((geojson['geometry'], feature_value(geojson)), )
        else:
            raise Exception

        geojson_bounds = geojson.get('bbox', calculate_bounds(geojson))

        if like is not None:
            template_ds = rasterio.open(like)

            if has_src_crs and not is_same_crs(src_crs, template_ds.crs):
                raise Exception

            if disjoint_bounds(geojson_bounds, template_ds.bounds):
                print "GeoJSON outside bounds of --like raster. "

            kwargs = template_ds.meta.copy()
            kwargs['count'] = 1

            # DEPRECATED
            # upgrade transform to affine object or we may get an invalid
            # transform set on output
            kwargs['transform'] = template_ds.affine

            template_ds.close()

        else:
            bounds = bounds or geojson_bounds

            if is_geographic_crs(src_crs):
                if (bounds[0] < -180 or bounds[2] > 180 or
                        bounds[1] < -80 or bounds[3] > 80):
                    raise Exception

            if dimensions:
                width, height = dimensions
                res = (
                    (bounds[2] - bounds[0]) / float(width),
                    (bounds[3] - bounds[1]) / float(height)
                )

            else:
                if not res:
                    raise Exception

                elif len(res) == 1:
                    res = (res[0], res[0])

                width = max(int(ceil((bounds[2] - bounds[0]) /
                            float(res[0]))), 1)
                height = max(int(ceil((bounds[3] - bounds[1]) /
                             float(res[1]))), 1)

            src_crs = src_crs.upper()
            if not src_crs.count('EPSG:'):
                raise Exception

            kwargs = {
                'count': 1,
                'crs': src_crs,
                'width': width,
                'height': height,
                'transform': Affine(res[0], 0, bounds[0], 0, -res[1],
                                    bounds[3]),
                'driver': driver
            }
            kwargs.update(**creation_options)

        result = rasterize(
            geometries,
            out_shape=(kwargs['height'], kwargs['width']),
            transform=kwargs.get('affine', kwargs['transform']),
            all_touched=all_touched,
            dtype=kwargs.get('dtype', None),
            default_value=default_value,
            fill = fill)

        if 'dtype' not in kwargs:
            kwargs['dtype'] = result.dtype

        kwargs['nodata'] = fill

        with rasterio.open(output, 'w', **kwargs) as out:
            out.write_band(1, result)
コード例 #10
0
def clip(ctx, files, output, bounds, like, driver, projection,
         creation_options):
    """Clips a raster using projected or geographic bounds.

    \b
      $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax
      $ rio clip input.tif output.tif --like template.tif

    The values of --bounds are presumed to be from the coordinate
    reference system of the input dataset unless the --geographic option
    is used, in which case the values may be longitude and latitude
    bounds. Either JSON, for example "[west, south, east, north]", or
    plain text "west south east north" representations of a bounding box
    are acceptable.

    If using --like, bounds will automatically be transformed to match the
    coordinate reference system of the input.

    It can also be combined to read bounds of a feature dataset using Fiona:

    \b
      $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds)

    """
    from rasterio.warp import transform_bounds

    with ctx.obj['env']:

        output, files = resolve_inout(files=files, output=output)
        input = files[0]

        with rasterio.open(input) as src:
            if bounds:
                if projection == 'geographic':
                    bounds = transform_bounds('epsg:4326', src.crs, *bounds)
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter(
                        'must overlap the extent of '
                        'the input raster',
                        param='--bounds',
                        param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter(
                            'must overlap the extent of '
                            'the input raster',
                            param='--like',
                            param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            bounds_window = src.window(*bounds)
            bounds_window = bounds_window.intersection(
                Window(0, 0, src.width, src.height))

            # Get the window with integer height
            # and width that contains the bounds window.
            out_window = bounds_window.round_lengths(op='ceil')

            height = int(out_window.height)
            width = int(out_window.width)

            out_kwargs = src.profile
            out_kwargs.update({
                'driver': driver,
                'height': height,
                'width': width,
                'transform': src.window_transform(out_window)
            })
            out_kwargs.update(**creation_options)

            if 'blockxsize' in out_kwargs and out_kwargs['blockxsize'] > width:
                del out_kwargs['blockxsize']
                logger.warn(
                    "Blockxsize removed from creation options to accomodate small output width"
                )
            if 'blockysize' in out_kwargs and out_kwargs['blockysize'] > height:
                del out_kwargs['blockysize']
                logger.warn(
                    "Blockysize removed from creation options to accomodate small output height"
                )

            with rasterio.open(output, 'w', **out_kwargs) as out:
                out.write(
                    src.read(window=out_window,
                             out_shape=(src.count, height, width)))
コード例 #11
0
def merge(
    datasets,
    bounds=None,
    res=None,
    nodata=None,
    dtype=None,
    precision=None,
    indexes=None,
    output_count=None,
    resampling=Resampling.nearest,
    method="first",
    target_aligned_pixels=False,
    dst_path=None,
    dst_kwds=None,
):
    """Copy valid pixels from input files to an output file.

    All files must have the same number of bands, data type, and
    coordinate reference system.

    Input files are merged in their listed order using the reverse
    painter's algorithm (default) or another method. If the output file exists,
    its values will be overwritten by input values.

    Geospatial bounds and resolution of a new output file in the
    units of the input file coordinate reference system may be provided
    and are otherwise taken from the first input file.

    Parameters
    ----------
    datasets : list of dataset objects opened in 'r' mode, filenames or PathLike objects
        source datasets to be merged.
    bounds: tuple, optional
        Bounds of the output image (left, bottom, right, top).
        If not set, bounds are determined from bounds of input rasters.
    res: tuple, optional
        Output resolution in units of coordinate reference system. If not set,
        the resolution of the first raster is used. If a single value is passed,
        output pixels will be square.
    nodata: float, optional
        nodata value to use in output file. If not set, uses the nodata value
        in the first input raster.
    dtype: numpy dtype or string
        dtype to use in outputfile. If not set, uses the dtype value in the
        first input raster.
    precision: float, optional
        Number of decimal points of precision when computing inverse transform.
    indexes : list of ints or a single int, optional
        bands to read and merge
    output_count: int, optional
        If using callable it may be useful to have additional bands in the output
        in addition to the indexes specified for read
    resampling : Resampling, optional
        Resampling algorithm used when reading input files.
        Default: `Resampling.nearest`.
    method : str or callable
        pre-defined method:
            first: reverse painting
            last: paint valid new on top of existing
            min: pixel-wise min of existing and new
            max: pixel-wise max of existing and new
        or custom callable with signature:

        def function(merged_data, new_data, merged_mask, new_mask, index=None, roff=None, coff=None):

            Parameters
            ----------
            merged_data : array_like
                array to update with new_data
            new_data : array_like
                data to merge
                same shape as merged_data
            merged_mask, new_mask : array_like
                boolean masks where merged/new data pixels are invalid
                same shape as merged_data
            index: int
                index of the current dataset within the merged dataset collection
            roff: int
                row offset in base array
            coff: int
                column offset in base array

    target_aligned_pixels : bool, optional
        Whether to adjust output image bounds so that pixel coordinates
        are integer multiples of pixel size, matching the ``-tap``
        options of GDAL utilities.  Default: False.
    dst_path : str or PathLike, optional
        Path of output dataset
    dst_kwds : dict, optional
        Dictionary of creation options and other paramters that will be
        overlaid on the profile of the output dataset.

    Returns
    -------
    tuple

        Two elements:

            dest: numpy ndarray
                Contents of all input rasters in single array

            out_transform: affine.Affine()
                Information for mapping pixel coordinates in `dest` to another
                coordinate system

    """
    if method in MERGE_METHODS:
        copyto = MERGE_METHODS[method]
    elif callable(method):
        copyto = method
    else:
        raise ValueError(
            'Unknown method {0}, must be one of {1} or callable'.format(
                method, list(MERGE_METHODS.keys())))

    # Create a dataset_opener object to use in several places in this function.
    if isinstance(datasets[0], (str, os.PathLike)):
        dataset_opener = rasterio.open
    else:

        @contextmanager
        def nullcontext(obj):
            try:
                yield obj
            finally:
                pass

        dataset_opener = nullcontext

    with dataset_opener(datasets[0]) as first:
        first_profile = first.profile
        first_res = first.res
        nodataval = first.nodatavals[0]
        dt = first.dtypes[0]

        if indexes is None:
            src_count = first.count
        elif isinstance(indexes, int):
            src_count = indexes
        else:
            src_count = len(indexes)

        try:
            first_colormap = first.colormap(1)
        except ValueError:
            first_colormap = None

    if not output_count:
        output_count = src_count

    # Extent from option or extent of all inputs
    if bounds:
        dst_w, dst_s, dst_e, dst_n = bounds
    else:
        # scan input files
        xs = []
        ys = []
        for dataset in datasets:
            with dataset_opener(dataset) as src:
                left, bottom, right, top = src.bounds
            xs.extend([left, right])
            ys.extend([bottom, top])
        dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys)

    # Resolution/pixel size
    if not res:
        res = first_res
    elif not np.iterable(res):
        res = (res, res)
    elif len(res) == 1:
        res = (res[0], res[0])

    if target_aligned_pixels:
        dst_w = math.floor(dst_w / res[0]) * res[0]
        dst_e = math.ceil(dst_e / res[0]) * res[0]
        dst_s = math.floor(dst_s / res[1]) * res[1]
        dst_n = math.ceil(dst_n / res[1]) * res[1]

    # Compute output array shape. We guarantee it will cover the output
    # bounds completely
    output_width = int(round((dst_e - dst_w) / res[0]))
    output_height = int(round((dst_n - dst_s) / res[1]))

    output_transform = Affine.translation(dst_w, dst_n) * Affine.scale(
        res[0], -res[1])

    if dtype is not None:
        dt = dtype
        logger.debug("Set dtype: %s", dt)

    out_profile = first_profile
    out_profile.update(**(dst_kwds or {}))

    out_profile["transform"] = output_transform
    out_profile["height"] = output_height
    out_profile["width"] = output_width
    out_profile["count"] = output_count
    if nodata is not None:
        out_profile["nodata"] = nodata

    # create destination array
    dest = np.zeros((output_count, output_height, output_width), dtype=dt)

    if nodata is not None:
        nodataval = nodata
        logger.debug("Set nodataval: %r", nodataval)

    if nodataval is not None:
        # Only fill if the nodataval is within dtype's range
        inrange = False
        if np.issubdtype(dt, np.integer):
            info = np.iinfo(dt)
            inrange = (info.min <= nodataval <= info.max)
        elif np.issubdtype(dt, np.floating):
            if math.isnan(nodataval):
                inrange = True
            else:
                info = np.finfo(dt)
                inrange = (info.min <= nodataval <= info.max)
        if inrange:
            dest.fill(nodataval)
        else:
            warnings.warn(
                "The nodata value, %s, is beyond the valid "
                "range of the chosen data type, %s. Consider overriding it "
                "using the --nodata option for better results." %
                (nodataval, dt))
    else:
        nodataval = 0

    for idx, dataset in enumerate(datasets):
        with dataset_opener(dataset) as src:
            # Real World (tm) use of boundless reads.
            # This approach uses the maximum amount of memory to solve the
            # problem. Making it more efficient is a TODO.

            if disjoint_bounds((dst_w, dst_s, dst_e, dst_n), src.bounds):
                logger.debug("Skipping source: src=%r, window=%r", src)
                continue

            # 1. Compute spatial intersection of destination and source
            src_w, src_s, src_e, src_n = src.bounds

            int_w = src_w if src_w > dst_w else dst_w
            int_s = src_s if src_s > dst_s else dst_s
            int_e = src_e if src_e < dst_e else dst_e
            int_n = src_n if src_n < dst_n else dst_n

            # 2. Compute the source window
            src_window = windows.from_bounds(int_w,
                                             int_s,
                                             int_e,
                                             int_n,
                                             src.transform,
                                             precision=precision)

            # 3. Compute the destination window
            dst_window = windows.from_bounds(int_w,
                                             int_s,
                                             int_e,
                                             int_n,
                                             output_transform,
                                             precision=precision)

            # 4. Read data in source window into temp
            src_window_rnd_shp = src_window.round_shape(pixel_precision=0)
            dst_window_rnd_shp = dst_window.round_shape(pixel_precision=0)
            dst_window_rnd_off = dst_window_rnd_shp.round_offsets(
                pixel_precision=0)
            temp_height, temp_width = (
                dst_window_rnd_off.height,
                dst_window_rnd_off.width,
            )
            temp_shape = (src_count, temp_height, temp_width)
            temp_src = src.read(
                out_shape=temp_shape,
                window=src_window_rnd_shp,
                boundless=False,
                masked=True,
                indexes=indexes,
                resampling=resampling,
            )

        # 5. Copy elements of temp into dest
        roff, coff = (
            max(0, dst_window_rnd_off.row_off),
            max(0, dst_window_rnd_off.col_off),
        )
        region = dest[:, roff:roff + temp_height, coff:coff + temp_width]

        if math.isnan(nodataval):
            region_mask = np.isnan(region)
        elif np.issubdtype(region.dtype, np.floating):
            region_mask = np.isclose(region, nodataval)
        else:
            region_mask = region == nodataval

        # Ensure common shape, resolving issue #2202.
        temp = temp_src[:, :region.shape[1], :region.shape[2]]
        temp_mask = np.ma.getmask(temp)
        copyto(region,
               temp,
               region_mask,
               temp_mask,
               index=idx,
               roff=roff,
               coff=coff)

    if dst_path is None:
        return dest, output_transform

    else:
        with rasterio.open(dst_path, "w", **out_profile) as dst:
            dst.write(dest)
            if first_colormap:
                dst.write_colormap(1, first_colormap)
コード例 #12
0
ファイル: test_coords.py プロジェクト: DanLipsitt/rasterio
def test_disjoint_bounds_issue1459_south_up():
    a = BoundingBox(left=0.0, bottom=1.0, right=1.0, top=0.0)
    b = BoundingBox(left=0.0, bottom=2.0, right=1.0, top=1.01)
    assert disjoint_bounds(a, b)
コード例 #13
0
ファイル: test_coords.py プロジェクト: DanLipsitt/rasterio
def test_disjoint_bounds_issue1459():
    a = BoundingBox(left=478038, bottom=57155, right=703888, top=266344)
    b = BoundingBox(left=584184, bottom=469629, right=740727, top=626172)
    assert disjoint_bounds(a, b)
コード例 #14
0
ファイル: clip.py プロジェクト: thiagols/vegetation-cover
def clip(ctx, files, output, bounds, like, driver, projection,
         creation_options):
    """Clips a raster using projected or geographic bounds.

    \b
      $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax
      $ rio clip input.tif output.tif --like template.tif

    The values of --bounds are presumed to be from the coordinate
    reference system of the input dataset unless the --geographic option
    is used, in which case the values may be longitude and latitude
    bounds. Either JSON, for example "[west, south, east, north]", or
    plain text "west south east north" representations of a bounding box
    are acceptable.

    If using --like, bounds will automatically be transformed to match the
    coordinate reference system of the input.

    It can also be combined to read bounds of a feature dataset using Fiona:

    \b
      $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds)

    """
    from rasterio.warp import transform_bounds

    with ctx.obj['env']:

        output, files = resolve_inout(files=files, output=output)
        input = files[0]

        with rasterio.open(input) as src:
            if bounds:
                if projection == 'geographic':
                    bounds = transform_bounds('epsg:4326', src.crs, *bounds)
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter(
                        'must overlap the extent of '
                        'the input raster',
                        param='--bounds',
                        param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter(
                            'must overlap the extent of '
                            'the input raster',
                            param='--like',
                            param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            window = src.window(*bounds)

            out_kwargs = src.meta.copy()
            out_kwargs.update({
                'driver': driver,
                'height': window[0][1] - window[0][0],
                'width': window[1][1] - window[1][0],
                'transform': src.window_transform(window)
            })
            out_kwargs.update(**creation_options)

            with rasterio.open(output, 'w', **out_kwargs) as out:
                out.write(src.read(window=window))
コード例 #15
0
ファイル: clip.py プロジェクト: RodrigoGonzalez/rasterio
def clip(ctx, files, output, bounds, like, driver, projection,
         creation_options):
    """Clips a raster using projected or geographic bounds.

    \b
      $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax
      $ rio clip input.tif output.tif --like template.tif

    The values of --bounds are presumed to be from the coordinate
    reference system of the input dataset unless the --geographic option
    is used, in which case the values may be longitude and latitude
    bounds. Either JSON, for example "[west, south, east, north]", or
    plain text "west south east north" representations of a bounding box
    are acceptable.

    If using --like, bounds will automatically be transformed to match the
    coordinate reference system of the input.

    It can also be combined to read bounds of a feature dataset using Fiona:

    \b
      $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds)

    """
    from rasterio.warp import transform_bounds

    with ctx.obj['env']:

        output, files = resolve_inout(files=files, output=output)
        input = files[0]

        with rasterio.open(input) as src:
            if bounds:
                if projection == 'geographic':
                    bounds = transform_bounds('epsg:4326', src.crs, *bounds)
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter('must overlap the extent of '
                                             'the input raster',
                                             param='--bounds',
                                             param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter('must overlap the extent of '
                                                 'the input raster',
                                                 param='--like',
                                                 param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            bounds_window = src.window(*bounds)
            bounds_window = bounds_window.intersection(
                Window(0, 0, src.width, src.height))

            # Get the window with integer height
            # and width that contains the bounds window.
            out_window = bounds_window.round_lengths(op='ceil')

            height = int(out_window.height)
            width = int(out_window.width)

            out_kwargs = src.meta.copy()
            out_kwargs.update({
                'driver': driver,
                'height': height,
                'width': width,
                'transform': src.window_transform(out_window)})
            out_kwargs.update(**creation_options)

            with rasterio.open(output, 'w', **out_kwargs) as out:
                out.write(src.read(window=out_window,
                                   out_shape=(src.count, height, width)))
コード例 #16
0
ファイル: features.py プロジェクト: gidden/rasterio
def rasterize(
        ctx,
        files,
        output,
        driver,
        like,
        bounds,
        dimensions,
        res,
        src_crs,
        all_touched,
        default_value,
        fill,
        property,
        creation_options):

    """Rasterize GeoJSON into a new or existing raster.

    If the output raster exists, rio-rasterize will rasterize feature values
    into all bands of that raster.  The GeoJSON is assumed to be in the same
    coordinate reference system as the output unless --src-crs is provided.

    --default_value or property values when using --property must be using a
    data type valid for the data type of that raster.


    If a template raster is provided using the --like option, the affine
    transform and data type from that raster will be used to create the output.
    Only a single band will be output.

    The GeoJSON is assumed to be in the same coordinate reference system unless
    --src-crs is provided.

    --default_value or property values when using --property must be using a
    data type valid for the data type of that raster.

    --driver, --bounds, --dimensions, and --res are ignored when output exists
    or --like raster is provided


    If the output does not exist and --like raster is not provided, the input
    GeoJSON will be used to determine the bounds of the output unless
    provided using --bounds.

    --dimensions or --res are required in this case.

    If --res is provided, the bottom and right coordinates of bounds are
    ignored.


    Note:
    The GeoJSON is not projected to match the coordinate reference system
    of the output or --like rasters at this time.  This functionality may be
    added in the future.
    """

    from rasterio._base import is_geographic_crs, is_same_crs
    from rasterio.features import rasterize
    from rasterio.features import bounds as calculate_bounds

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1

    output, files = resolve_inout(files=files, output=output)

    has_src_crs = src_crs is not None
    src_crs = src_crs or 'EPSG:4326'

    # If values are actually meant to be integers, we need to cast them
    # as such or rasterize creates floating point outputs
    if default_value == int(default_value):
        default_value = int(default_value)
    if fill == int(fill):
        fill = int(fill)

    with rasterio.drivers(CPL_DEBUG=verbosity > 2):

        def feature_value(feature):
            if property and 'properties' in feature:
                return feature['properties'].get(property, default_value)
            return default_value

        with click.open_file(files.pop(0) if files else '-') as gj_f:
            geojson = json.loads(gj_f.read())
        if 'features' in geojson:
            geometries = []
            for f in geojson['features']:
                geometries.append((f['geometry'], feature_value(f)))
        elif 'geometry' in geojson:
            geometries = ((geojson['geometry'], feature_value(geojson)), )
        else:
            raise click.BadParameter('Invalid GeoJSON', param=input,
                                     param_hint='input')

        geojson_bounds = geojson.get('bbox', calculate_bounds(geojson))

        if os.path.exists(output):
            with rasterio.open(output, 'r+') as out:
                if has_src_crs and not is_same_crs(src_crs, out.crs):
                    raise click.BadParameter('GeoJSON does not match crs of '
                                             'existing output raster',
                                             param='input', param_hint='input')

                if disjoint_bounds(geojson_bounds, out.bounds):
                    click.echo("GeoJSON outside bounds of existing output "
                               "raster. Are they in different coordinate "
                               "reference systems?",
                               err=True)

                meta = out.meta.copy()

                result = rasterize(
                    geometries,
                    out_shape=(meta['height'], meta['width']),
                    transform=meta.get('affine', meta['transform']),
                    all_touched=all_touched,
                    dtype=meta.get('dtype', None),
                    default_value=default_value,
                    fill = fill)

                for bidx in range(1, meta['count'] + 1):
                    data = out.read(bidx, masked=True)
                    # Burn in any non-fill pixels, and update mask accordingly
                    ne = result != fill
                    data[ne] = result[ne]
                    data.mask[ne] = False
                    out.write_band(bidx, data)

        else:
            if like is not None:
                template_ds = rasterio.open(like)

                if has_src_crs and not is_same_crs(src_crs, template_ds.crs):
                    raise click.BadParameter('GeoJSON does not match crs of '
                                             '--like raster',
                                             param='input', param_hint='input')

                if disjoint_bounds(geojson_bounds, template_ds.bounds):
                    click.echo("GeoJSON outside bounds of --like raster. "
                               "Are they in different coordinate reference "
                               "systems?",
                               err=True)

                kwargs = template_ds.meta.copy()
                kwargs['count'] = 1

                # DEPRECATED
                # upgrade transform to affine object or we may get an invalid
                # transform set on output
                kwargs['transform'] = template_ds.affine

                template_ds.close()

            else:
                bounds = bounds or geojson_bounds

                if is_geographic_crs(src_crs):
                    if (bounds[0] < -180 or bounds[2] > 180 or
                            bounds[1] < -80 or bounds[3] > 80):
                        raise click.BadParameter(
                            "Bounds are beyond the valid extent for "
                            "EPSG:4326.",
                            ctx, param=bounds, param_hint='--bounds')

                if dimensions:
                    width, height = dimensions
                    res = (
                        (bounds[2] - bounds[0]) / float(width),
                        (bounds[3] - bounds[1]) / float(height)
                    )

                else:
                    if not res:
                        raise click.BadParameter(
                            'pixel dimensions are required',
                            ctx, param=res, param_hint='--res')

                    elif len(res) == 1:
                        res = (res[0], res[0])

                    width = max(int(ceil((bounds[2] - bounds[0]) /
                                float(res[0]))), 1)
                    height = max(int(ceil((bounds[3] - bounds[1]) /
                                 float(res[1]))), 1)

                src_crs = src_crs.upper()
                if not src_crs.count('EPSG:'):
                    raise click.BadParameter(
                        'invalid CRS.  Must be an EPSG code.',
                        ctx, param=src_crs, param_hint='--src_crs')

                kwargs = {
                    'count': 1,
                    'crs': src_crs,
                    'width': width,
                    'height': height,
                    'transform': Affine(res[0], 0, bounds[0], 0, -res[1],
                                        bounds[3]),
                    'driver': driver
                }
                kwargs.update(**creation_options)

            result = rasterize(
                geometries,
                out_shape=(kwargs['height'], kwargs['width']),
                transform=kwargs.get('affine', kwargs['transform']),
                all_touched=all_touched,
                dtype=kwargs.get('dtype', None),
                default_value=default_value,
                fill = fill)

            if 'dtype' not in kwargs:
                kwargs['dtype'] = result.dtype

            kwargs['nodata'] = fill

            with rasterio.open(output, 'w', **kwargs) as out:
                out.write_band(1, result)
コード例 #17
0
ファイル: features.py プロジェクト: gidden/rasterio
def mask(
        ctx,
        files,
        output,
        geojson_mask,
        driver,
        all_touched,
        crop,
        invert,
        creation_options):

    """Masks in raster using GeoJSON features (masks out all areas not covered
    by features), and optionally crops the output raster to the extent of the
    features.  Features are assumed to be in the same coordinate reference
    system as the input raster.

    GeoJSON must be the first input file or provided from stdin:

    > rio mask input.tif output.tif --geojson-mask features.json

    > rio mask input.tif output.tif --geojson-mask - < features.json

    If the output raster exists, it will be completely overwritten with the
    results of this operation.

    The result is always equal to or within the bounds of the input raster.

    --crop and --invert options are mutually exclusive.

    --crop option is not valid if features are completely outside extent of
    input raster.
    """

    from rasterio.features import geometry_mask
    from rasterio.features import bounds as calculate_bounds

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1

    output, files = resolve_inout(files=files, output=output)
    input = files[0]

    if geojson_mask is None:
        click.echo('No GeoJSON provided, INPUT will be copied to OUTPUT',
                   err=True)
        shutil.copy(input, output)
        return

    if crop and invert:
        click.echo('Invert option ignored when using --crop', err=True)
        invert = False

    with rasterio.drivers(CPL_DEBUG=verbosity > 2):
        try:
            with click.open_file(geojson_mask) as f:
                geojson = json.loads(f.read())
        except ValueError:
            raise click.BadParameter('GeoJSON could not be read from '
                                     '--geojson-mask or stdin',
                                     param_hint='--geojson-mask')

        if 'features' in geojson:
            geometries = (f['geometry'] for f in geojson['features'])
        elif 'geometry' in geojson:
            geometries = (geojson['geometry'], )
        else:
            raise click.BadParameter('Invalid GeoJSON', param=input,
                                     param_hint='input')
        bounds = geojson.get('bbox', calculate_bounds(geojson))

        with rasterio.open(input) as src:
            # If y pixel value is positive, then invert y dimension in bounds
            invert_y = src.affine.e > 0

            src_bounds = src.bounds
            if invert_y:
                src_bounds = [src.bounds[0], src.bounds[3],
                              src.bounds[2], src.bounds[1]]

            has_disjoint_bounds = disjoint_bounds(bounds, src_bounds)

            if crop:
                if has_disjoint_bounds:

                    raise click.BadParameter('not allowed for GeoJSON outside '
                                             'the extent of the input raster',
                                             param=crop, param_hint='--crop')

                if invert_y:
                    bounds = (bounds[0], bounds[3], bounds[2], bounds[1])

                window = src.window(*bounds)
                transform = src.window_transform(window)
                (r1, r2), (c1, c2) = window
                mask_shape = (r2 - r1, c2 - c1)
            else:
                if has_disjoint_bounds:
                    click.echo('GeoJSON outside bounds of existing output '
                               'raster. Are they in different coordinate '
                               'reference systems?',
                               err=True)

                window = None
                transform = src.affine
                mask_shape = src.shape

            mask = geometry_mask(
                geometries,
                out_shape=mask_shape,
                transform=transform,
                all_touched=all_touched,
                invert=invert)

            meta = src.meta.copy()
            meta.update(**creation_options)
            meta.update({
                'driver': driver,
                'height': mask.shape[0],
                'width': mask.shape[1],
                'transform': transform
            })

            with rasterio.open(output, 'w', **meta) as out:
                for bidx in range(1, src.count + 1):
                    img = src.read(bidx, masked=True, window=window)
                    img.mask = img.mask | mask
                    out.write_band(bidx, img.filled(src.nodatavals[bidx-1]))
コード例 #18
0
ファイル: convert.py プロジェクト: jleppert/lambda-gdal
def clip(
        ctx,
        files,
        output,
        bounds,
        like,
        driver,
        creation_options):
    """Clips a raster using bounds input directly or from a template raster.

    \b
      $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax
      $ rio clip input.tif output.tif --like template.tif

    If using --bounds, values must be in coordinate reference system of input.
    If using --like, bounds will automatically be transformed to match the
    coordinate reference system of the input.

    It can also be combined to read bounds of a feature dataset using Fiona:

    \b
      $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds)

    """

    from rasterio.warp import transform_bounds

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1

    with rasterio.drivers(CPL_DEBUG=verbosity > 2):

        output, files = resolve_inout(files=files, output=output)
        input = files[0]

        with rasterio.open(input) as src:
            if bounds:
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter('must overlap the extent of '
                                             'the input raster',
                                             param='--bounds',
                                             param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter('must overlap the extent of '
                                                 'the input raster',
                                                 param='--like',
                                                 param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            window = src.window(*bounds)

            out_kwargs = src.meta.copy()
            out_kwargs.update({
                'driver': driver,
                'height': window[0][1] - window[0][0],
                'width': window[1][1] - window[1][0],
                'transform': src.window_transform(window)
            })
            out_kwargs.update(**creation_options)

            with rasterio.open(output, 'w', **out_kwargs) as out:
                out.write(src.read(window=window))
コード例 #19
0
def clip(ctx, files, output, bounds, like, driver, creation_options):
    """Clips a raster using bounds input directly or from a template raster.

    \b
      $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax
      $ rio clip input.tif output.tif --like template.tif

    If using --bounds, values must be in coordinate reference system of input.
    If using --like, bounds will automatically be transformed to match the
    coordinate reference system of the input.

    It can also be combined to read bounds of a feature dataset using Fiona:

    \b
      $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds)

    """

    from rasterio.warp import transform_bounds

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1

    with rasterio.drivers(CPL_DEBUG=verbosity > 2):

        output, files = resolve_inout(files=files, output=output)
        input = files[0]

        with rasterio.open(input) as src:
            if bounds:
                if disjoint_bounds(bounds, src.bounds):
                    raise click.BadParameter(
                        'must overlap the extent of '
                        'the input raster',
                        param='--bounds',
                        param_hint='--bounds')
            elif like:
                with rasterio.open(like) as template_ds:
                    bounds = template_ds.bounds
                    if template_ds.crs != src.crs:
                        bounds = transform_bounds(template_ds.crs, src.crs,
                                                  *bounds)

                    if disjoint_bounds(bounds, src.bounds):
                        raise click.BadParameter(
                            'must overlap the extent of '
                            'the input raster',
                            param='--like',
                            param_hint='--like')

            else:
                raise click.UsageError('--bounds or --like required')

            window = src.window(*bounds)

            out_kwargs = src.meta.copy()
            out_kwargs.update({
                'driver': driver,
                'height': window[0][1] - window[0][0],
                'width': window[1][1] - window[1][0],
                'transform': src.window_transform(window)
            })
            out_kwargs.update(**creation_options)

            with rasterio.open(output, 'w', **out_kwargs) as out:
                out.write(src.read(window=window))
コード例 #20
0
def mask(ctx, files, output, geojson_mask, driver, all_touched, crop, invert,
         force_overwrite, creation_options):
    """Masks in raster using GeoJSON features (masks out all areas not covered
    by features), and optionally crops the output raster to the extent of the
    features.  Features are assumed to be in the same coordinate reference
    system as the input raster.

    GeoJSON must be the first input file or provided from stdin:

    > rio mask input.tif output.tif --geojson-mask features.json

    > rio mask input.tif output.tif --geojson-mask - < features.json

    If the output raster exists, it will be completely overwritten with the
    results of this operation.

    The result is always equal to or within the bounds of the input raster.

    --crop and --invert options are mutually exclusive.

    --crop option is not valid if features are completely outside extent of
    input raster.
    """

    from rasterio.features import geometry_mask
    from rasterio.features import bounds as calculate_bounds

    verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1

    output, files = resolve_inout(files=files,
                                  output=output,
                                  force_overwrite=force_overwrite)
    input = files[0]

    if geojson_mask is None:
        click.echo('No GeoJSON provided, INPUT will be copied to OUTPUT',
                   err=True)
        shutil.copy(input, output)
        return

    if crop and invert:
        click.echo('Invert option ignored when using --crop', err=True)
        invert = False

    with rasterio.drivers(CPL_DEBUG=verbosity > 2):
        try:
            with click.open_file(geojson_mask) as f:
                geojson = json.loads(f.read())
        except ValueError:
            raise click.BadParameter(
                'GeoJSON could not be read from '
                '--geojson-mask or stdin',
                param_hint='--geojson-mask')

        if 'features' in geojson:
            geometries = (f['geometry'] for f in geojson['features'])
        elif 'geometry' in geojson:
            geometries = (geojson['geometry'], )
        else:
            raise click.BadParameter('Invalid GeoJSON',
                                     param=input,
                                     param_hint='input')
        bounds = geojson.get('bbox', calculate_bounds(geojson))

        with rasterio.open(input) as src:
            # If y pixel value is positive, then invert y dimension in bounds
            invert_y = src.affine.e > 0

            src_bounds = src.bounds
            if invert_y:
                src_bounds = [
                    src.bounds[0], src.bounds[3], src.bounds[2], src.bounds[1]
                ]

            has_disjoint_bounds = disjoint_bounds(bounds, src_bounds)

            if crop:
                if has_disjoint_bounds:

                    raise click.BadParameter(
                        'not allowed for GeoJSON outside '
                        'the extent of the input raster',
                        param=crop,
                        param_hint='--crop')

                if invert_y:
                    bounds = (bounds[0], bounds[3], bounds[2], bounds[1])

                window = src.window(*bounds)
                transform = src.window_transform(window)
                (r1, r2), (c1, c2) = window
                mask_shape = (r2 - r1, c2 - c1)
            else:
                if has_disjoint_bounds:
                    click.echo(
                        'GeoJSON outside bounds of existing output '
                        'raster. Are they in different coordinate '
                        'reference systems?',
                        err=True)

                window = None
                transform = src.affine
                mask_shape = src.shape

            mask = geometry_mask(geometries,
                                 out_shape=mask_shape,
                                 transform=transform,
                                 all_touched=all_touched,
                                 invert=invert)

            meta = src.meta.copy()
            meta.update(**creation_options)
            meta.update({
                'driver': driver,
                'height': mask.shape[0],
                'width': mask.shape[1],
                'transform': transform
            })

            with rasterio.open(output, 'w', **meta) as out:
                for bidx in range(1, src.count + 1):
                    img = src.read(bidx, masked=True, window=window)
                    img.mask = img.mask | mask
                    out.write_band(bidx, img.filled(src.nodatavals[bidx - 1]))