def clip(self): """ Clip images based on bounds provided Implementation is borrowed from https://github.com/brendan-ward/rasterio/blob/e3687ce0ccf8ad92844c16d913a6482d5142cf48/rasterio/rio/convert.py """ self.output("Clipping", normal=True) # create new folder for clipped images path = check_create_folder(join(self.scene_path, 'clipped')) try: temp_bands = copy(self.bands) temp_bands.append('QA') for i, band in enumerate(temp_bands): band_name = self._get_full_filename(band) band_path = join(self.scene_path, band_name) self.output("Band %s" % band, normal=True, color='green', indent=1) with rasterio.open(band_path) as src: bounds = transform_bounds( { 'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84', 'no_defs': True }, src.crs, *self.bounds) if disjoint_bounds(bounds, src.bounds): bounds = adjust_bounding_box(src.bounds, bounds) window = src.window(*bounds) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': 'GTiff', 'height': window[0][1] - window[0][0], 'width': window[1][1] - window[1][0], 'transform': src.window_transform(window) }) with rasterio.open(join(path, band_name), 'w', **out_kwargs) as out: out.write(src.read(window=window)) # Copy MTL to the clipped folder copyfile(join(self.scene_path, self.scene + '_MTL.txt'), join(path, self.scene + '_MTL.txt')) return path except IOError as e: exit(e.message, 1)
def clip(self): """ Clip images based on bounds provided Implementation is borrowed from https://github.com/brendan-ward/rasterio/blob/e3687ce0ccf8ad92844c16d913a6482d5142cf48/rasterio/rio/convert.py """ self.output("Clipping", normal=True) # create new folder for clipped images path = check_create_folder(join(self.scene_path, 'clipped')) try: temp_bands = copy(self.bands) temp_bands.append('QA') for i, band in enumerate(temp_bands): band_name = self._get_full_filename(band) band_path = join(self.scene_path, band_name) self.output("Band %s" % band, normal=True, color='green', indent=1) with rasterio.open(band_path) as src: bounds = transform_bounds( { 'proj': 'longlat', 'ellps': 'WGS84', 'datum': 'WGS84', 'no_defs': True }, src.crs, *self.bounds ) if disjoint_bounds(bounds, src.bounds): bounds = adjust_bounding_box(src.bounds, bounds) window = src.window(*bounds) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': 'GTiff', 'height': window[0][1] - window[0][0], 'width': window[1][1] - window[1][0], 'transform': src.window_transform(window) }) with rasterio.open(join(path, band_name), 'w', **out_kwargs) as out: out.write(src.read(window=window)) # Copy MTL to the clipped folder copyfile(join(self.scene_path, self.scene + '_MTL.txt'), join(path, self.scene + '_MTL.txt')) return path except IOError as e: exit(e.message, 1)
def bbox_intersection(bounds1, bounds2): if disjoint_bounds(bounds1, bounds2): raise Exception("Bounds are disjoint, no interseciton exists") bbox = BoundingBox( left=max(bounds1.left, bounds2.left), right=min(bounds1.right, bounds2.right), top=min(bounds1.top, bounds2.top), bottom=max(bounds1.bottom, bounds2.bottom) ) return bbox
def list_files(self, time:pd.Timestamp) -> list: out = [] if time in self.times: time = pd.Timestamp(f'{time.year}-{time.month}-01') time_pattern = time.strftime('%Y%m%d') files = self.paths.src.ls(recursive=True, include=['JD.tif', time_pattern], exclude=['.xml']) # Find windows joint with region bounding box for f in files: data = open_tif(f) if not disjoint_bounds(data.bounds, self.region.bbox): out.append(f) return out
def _clip_bounds(self, bounds): if disjoint_bounds(bounds, self.raster.bounds): raise Exception("Bounds are disjoint, no interseciton exists") # Get the new bounds as a window in the original raster bounds_window = rasterio.windows.from_bounds(*bounds, transform=self.raster.transform) bounds_window = bounds_window.intersection(self.window) self.window = bounds_window.round_lengths(op='ceil') self.height = int(self.window.height) self.width = int(self.window.width) self.transform = rasterio.windows.transform(self.window, self.transform) self._update_profile()
def clip_raster(raster, dst_bounds): src = read_raster(raster) src_bounds = src.bounds if disjoint_bounds(src_bounds, dst_bounds): msg = 'Raster bounds {} are not covered by clipping bounds {}'.format(src_bounds, dst_bounds) raise ValueError(msg) window = src.window(*dst_bounds) window = window.round_lengths(op='ceil') transform = src.window_transform(window) data = src.read(window=window, out_shape=(src.count, window.height, window.width)) src.close() return data, transform
def clip( ctx, files, output, bounds, like, driver, nodata, projection, overwrite, creation_options, with_complement, ): """Clips a raster using projected or geographic bounds. The values of --bounds are presumed to be from the coordinate reference system of the input dataset unless the --geographic option is used, in which case the values may be longitude and latitude bounds. Either JSON, for example "[west, south, east, north]", or plain text "west south east north" representations of a bounding box are acceptable. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. Datasets with non-rectilinear geo transforms (i.e. with rotation and/or shear) may not be cropped using this command. They must be processed with rio-warp. Examples -------- $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif """ from rasterio.warp import transform_bounds with ctx.obj['env']: output, files = resolve_inout(files=files, output=output, overwrite=overwrite) input = files[0] with rasterio.open(input) as src: if not src.transform.is_rectilinear: raise click.BadParameter( "Non-rectilinear rasters (i.e. with rotation or shear) cannot be clipped" ) if bounds: if projection == 'geographic': bounds = transform_bounds(CRS.from_epsg(4326), src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') bounds_window = src.window(*bounds) if not with_complement: bounds_window = bounds_window.intersection( Window(0, 0, src.width, src.height) ) # Get the window with integer height # and width that contains the bounds window. out_window = bounds_window.round_lengths(op='ceil') height = int(out_window.height) width = int(out_window.width) out_kwargs = src.profile if driver: out_kwargs["driver"] = driver if nodata is not None: out_kwargs["nodata"] = nodata out_kwargs.update({ 'height': height, 'width': width, 'transform': src.window_transform(out_window)}) out_kwargs.update(**creation_options) if "blockxsize" in out_kwargs and int(out_kwargs["blockxsize"]) > width: del out_kwargs["blockxsize"] logger.warning( "Blockxsize removed from creation options to accomodate small output width" ) if "blockysize" in out_kwargs and int(out_kwargs["blockysize"]) > height: del out_kwargs["blockysize"] logger.warning( "Blockysize removed from creation options to accomodate small output height" ) with rasterio.open(output, "w", **out_kwargs) as out: out.write( src.read( window=out_window, out_shape=(src.count, height, width), boundless=True, masked=True, ) )
def rasterize( ctx, files, output, driver, like, bounds, dimensions, res, src_crs, all_touched, default_value, fill, prop, overwrite, nodata, creation_options): """Rasterize GeoJSON into a new or existing raster. If the output raster exists, rio-rasterize will rasterize feature values into all bands of that raster. The GeoJSON is assumed to be in the same coordinate reference system as the output unless --src-crs is provided. --default_value or property values when using --property must be using a data type valid for the data type of that raster. If a template raster is provided using the --like option, the affine transform and data type from that raster will be used to create the output. Only a single band will be output. The GeoJSON is assumed to be in the same coordinate reference system unless --src-crs is provided. --default_value or property values when using --property must be using a data type valid for the data type of that raster. --driver, --bounds, --dimensions, --res, --nodata are ignored when output exists or --like raster is provided If the output does not exist and --like raster is not provided, the input GeoJSON will be used to determine the bounds of the output unless provided using --bounds. --dimensions or --res are required in this case. If --res is provided, the bottom and right coordinates of bounds are ignored. Note ---- The GeoJSON is not projected to match the coordinate reference system of the output or --like rasters at this time. This functionality may be added in the future. """ from rasterio.crs import CRS from rasterio.features import rasterize from rasterio.features import bounds as calculate_bounds output, files = resolve_inout( files=files, output=output, overwrite=overwrite) bad_param = click.BadParameter('invalid CRS. Must be an EPSG code.', ctx, param=src_crs, param_hint='--src_crs') has_src_crs = src_crs is not None try: src_crs = CRS.from_string(src_crs) if has_src_crs else CRS.from_string('EPSG:4326') except CRSError: raise bad_param # If values are actually meant to be integers, we need to cast them # as such or rasterize creates floating point outputs if default_value == int(default_value): default_value = int(default_value) if fill == int(fill): fill = int(fill) with ctx.obj['env']: def feature_value(feature): if prop and 'properties' in feature: return feature['properties'].get(prop, default_value) return default_value with click.open_file(files.pop(0) if files else '-') as gj_f: geojson = json.loads(gj_f.read()) if 'features' in geojson: geometries = [] for f in geojson['features']: geometries.append((f['geometry'], feature_value(f))) elif 'geometry' in geojson: geometries = ((geojson['geometry'], feature_value(geojson)), ) else: raise click.BadParameter('Invalid GeoJSON', param=input, param_hint='input') geojson_bounds = geojson.get('bbox', calculate_bounds(geojson)) if rasterio.shutil.exists(output): with rasterio.open(output, 'r+') as out: if has_src_crs and src_crs != out.crs: raise click.BadParameter('GeoJSON does not match crs of ' 'existing output raster', param='input', param_hint='input') if disjoint_bounds(geojson_bounds, out.bounds): click.echo("GeoJSON outside bounds of existing output " "raster. Are they in different coordinate " "reference systems?", err=True) meta = out.meta result = rasterize( geometries, out_shape=(meta['height'], meta['width']), transform=meta.get('affine', meta['transform']), all_touched=all_touched, dtype=meta.get('dtype', None), default_value=default_value, fill=fill) for bidx in range(1, meta['count'] + 1): data = out.read(bidx, masked=True) # Burn in any non-fill pixels, and update mask accordingly ne = result != fill data[ne] = result[ne] if data.mask.any(): data.mask[ne] = False out.write(data, indexes=bidx) else: if like is not None: template_ds = rasterio.open(like) if has_src_crs and src_crs != template_ds.crs: raise click.BadParameter('GeoJSON does not match crs of ' '--like raster', param='input', param_hint='input') if disjoint_bounds(geojson_bounds, template_ds.bounds): click.echo("GeoJSON outside bounds of --like raster. " "Are they in different coordinate reference " "systems?", err=True) kwargs = template_ds.profile kwargs['count'] = 1 kwargs['transform'] = template_ds.transform template_ds.close() else: bounds = bounds or geojson_bounds if src_crs.is_geographic: if (bounds[0] < -180 or bounds[2] > 180 or bounds[1] < -80 or bounds[3] > 80): raise click.BadParameter( "Bounds are beyond the valid extent for " "EPSG:4326.", ctx, param=bounds, param_hint='--bounds') if dimensions: width, height = dimensions res = ( (bounds[2] - bounds[0]) / float(width), (bounds[3] - bounds[1]) / float(height) ) else: if not res: raise click.BadParameter( 'pixel dimensions are required', ctx, param=res, param_hint='--res') elif len(res) == 1: res = (res[0], res[0]) width = max(int(ceil((bounds[2] - bounds[0]) / float(res[0]))), 1) height = max(int(ceil((bounds[3] - bounds[1]) / float(res[1]))), 1) kwargs = { 'count': 1, 'crs': src_crs, 'width': width, 'height': height, 'transform': Affine(res[0], 0, bounds[0], 0, -res[1], bounds[3]), 'driver': driver } kwargs.update(**creation_options) if nodata is not None: kwargs['nodata'] = nodata result = rasterize( geometries, out_shape=(kwargs['height'], kwargs['width']), transform=kwargs['transform'], all_touched=all_touched, dtype=kwargs.get('dtype', None), default_value=default_value, fill=fill) if 'dtype' not in kwargs: kwargs['dtype'] = result.dtype with rasterio.open(output, 'w', **kwargs) as out: out.write(result, indexes=1)
def rasterize( geojson, output, like=None, bounds=None, dimensions=None, res=None, src_crs=None, all_touched=None, default_value=1, fill=0, prop=None, force_overwrite=None, creation_options={}, driver='GTiff'): from rasterio._base import is_geographic_crs, is_same_crs from rasterio.features import rasterize from rasterio.features import bounds as calculate_bounds has_src_crs = src_crs is not None src_crs = src_crs or 'EPSG:4326' # If values are actually meant to be integers, we need to cast them # as such or rasterize creates floating point outputs if default_value == int(default_value): default_value = int(default_value) if fill == int(fill): fill = int(fill) with rasterio.drivers(): def feature_value(feature): if prop and 'properties' in feature: return feature['properties'].get(prop, default_value) return default_value if 'features' in geojson: geometries = [] for f in geojson['features']: geometries.append((f['geometry'], feature_value(f))) elif 'geometry' in geojson: geometries = ((geojson['geometry'], feature_value(geojson)), ) else: raise Exception geojson_bounds = geojson.get('bbox', calculate_bounds(geojson)) if like is not None: template_ds = rasterio.open(like) if has_src_crs and not is_same_crs(src_crs, template_ds.crs): raise Exception if disjoint_bounds(geojson_bounds, template_ds.bounds): print "GeoJSON outside bounds of --like raster. " kwargs = template_ds.meta.copy() kwargs['count'] = 1 # DEPRECATED # upgrade transform to affine object or we may get an invalid # transform set on output kwargs['transform'] = template_ds.affine template_ds.close() else: bounds = bounds or geojson_bounds if is_geographic_crs(src_crs): if (bounds[0] < -180 or bounds[2] > 180 or bounds[1] < -80 or bounds[3] > 80): raise Exception if dimensions: width, height = dimensions res = ( (bounds[2] - bounds[0]) / float(width), (bounds[3] - bounds[1]) / float(height) ) else: if not res: raise Exception elif len(res) == 1: res = (res[0], res[0]) width = max(int(ceil((bounds[2] - bounds[0]) / float(res[0]))), 1) height = max(int(ceil((bounds[3] - bounds[1]) / float(res[1]))), 1) src_crs = src_crs.upper() if not src_crs.count('EPSG:'): raise Exception kwargs = { 'count': 1, 'crs': src_crs, 'width': width, 'height': height, 'transform': Affine(res[0], 0, bounds[0], 0, -res[1], bounds[3]), 'driver': driver } kwargs.update(**creation_options) result = rasterize( geometries, out_shape=(kwargs['height'], kwargs['width']), transform=kwargs.get('affine', kwargs['transform']), all_touched=all_touched, dtype=kwargs.get('dtype', None), default_value=default_value, fill = fill) if 'dtype' not in kwargs: kwargs['dtype'] = result.dtype kwargs['nodata'] = fill with rasterio.open(output, 'w', **kwargs) as out: out.write_band(1, result)
def clip(ctx, files, output, bounds, like, driver, projection, creation_options): """Clips a raster using projected or geographic bounds. \b $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif The values of --bounds are presumed to be from the coordinate reference system of the input dataset unless the --geographic option is used, in which case the values may be longitude and latitude bounds. Either JSON, for example "[west, south, east, north]", or plain text "west south east north" representations of a bounding box are acceptable. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. It can also be combined to read bounds of a feature dataset using Fiona: \b $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds) """ from rasterio.warp import transform_bounds with ctx.obj['env']: output, files = resolve_inout(files=files, output=output) input = files[0] with rasterio.open(input) as src: if bounds: if projection == 'geographic': bounds = transform_bounds('epsg:4326', src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') bounds_window = src.window(*bounds) bounds_window = bounds_window.intersection( Window(0, 0, src.width, src.height)) # Get the window with integer height # and width that contains the bounds window. out_window = bounds_window.round_lengths(op='ceil') height = int(out_window.height) width = int(out_window.width) out_kwargs = src.profile out_kwargs.update({ 'driver': driver, 'height': height, 'width': width, 'transform': src.window_transform(out_window) }) out_kwargs.update(**creation_options) if 'blockxsize' in out_kwargs and out_kwargs['blockxsize'] > width: del out_kwargs['blockxsize'] logger.warn( "Blockxsize removed from creation options to accomodate small output width" ) if 'blockysize' in out_kwargs and out_kwargs['blockysize'] > height: del out_kwargs['blockysize'] logger.warn( "Blockysize removed from creation options to accomodate small output height" ) with rasterio.open(output, 'w', **out_kwargs) as out: out.write( src.read(window=out_window, out_shape=(src.count, height, width)))
def merge( datasets, bounds=None, res=None, nodata=None, dtype=None, precision=None, indexes=None, output_count=None, resampling=Resampling.nearest, method="first", target_aligned_pixels=False, dst_path=None, dst_kwds=None, ): """Copy valid pixels from input files to an output file. All files must have the same number of bands, data type, and coordinate reference system. Input files are merged in their listed order using the reverse painter's algorithm (default) or another method. If the output file exists, its values will be overwritten by input values. Geospatial bounds and resolution of a new output file in the units of the input file coordinate reference system may be provided and are otherwise taken from the first input file. Parameters ---------- datasets : list of dataset objects opened in 'r' mode, filenames or PathLike objects source datasets to be merged. bounds: tuple, optional Bounds of the output image (left, bottom, right, top). If not set, bounds are determined from bounds of input rasters. res: tuple, optional Output resolution in units of coordinate reference system. If not set, the resolution of the first raster is used. If a single value is passed, output pixels will be square. nodata: float, optional nodata value to use in output file. If not set, uses the nodata value in the first input raster. dtype: numpy dtype or string dtype to use in outputfile. If not set, uses the dtype value in the first input raster. precision: float, optional Number of decimal points of precision when computing inverse transform. indexes : list of ints or a single int, optional bands to read and merge output_count: int, optional If using callable it may be useful to have additional bands in the output in addition to the indexes specified for read resampling : Resampling, optional Resampling algorithm used when reading input files. Default: `Resampling.nearest`. method : str or callable pre-defined method: first: reverse painting last: paint valid new on top of existing min: pixel-wise min of existing and new max: pixel-wise max of existing and new or custom callable with signature: def function(merged_data, new_data, merged_mask, new_mask, index=None, roff=None, coff=None): Parameters ---------- merged_data : array_like array to update with new_data new_data : array_like data to merge same shape as merged_data merged_mask, new_mask : array_like boolean masks where merged/new data pixels are invalid same shape as merged_data index: int index of the current dataset within the merged dataset collection roff: int row offset in base array coff: int column offset in base array target_aligned_pixels : bool, optional Whether to adjust output image bounds so that pixel coordinates are integer multiples of pixel size, matching the ``-tap`` options of GDAL utilities. Default: False. dst_path : str or PathLike, optional Path of output dataset dst_kwds : dict, optional Dictionary of creation options and other paramters that will be overlaid on the profile of the output dataset. Returns ------- tuple Two elements: dest: numpy ndarray Contents of all input rasters in single array out_transform: affine.Affine() Information for mapping pixel coordinates in `dest` to another coordinate system """ if method in MERGE_METHODS: copyto = MERGE_METHODS[method] elif callable(method): copyto = method else: raise ValueError( 'Unknown method {0}, must be one of {1} or callable'.format( method, list(MERGE_METHODS.keys()))) # Create a dataset_opener object to use in several places in this function. if isinstance(datasets[0], (str, os.PathLike)): dataset_opener = rasterio.open else: @contextmanager def nullcontext(obj): try: yield obj finally: pass dataset_opener = nullcontext with dataset_opener(datasets[0]) as first: first_profile = first.profile first_res = first.res nodataval = first.nodatavals[0] dt = first.dtypes[0] if indexes is None: src_count = first.count elif isinstance(indexes, int): src_count = indexes else: src_count = len(indexes) try: first_colormap = first.colormap(1) except ValueError: first_colormap = None if not output_count: output_count = src_count # Extent from option or extent of all inputs if bounds: dst_w, dst_s, dst_e, dst_n = bounds else: # scan input files xs = [] ys = [] for dataset in datasets: with dataset_opener(dataset) as src: left, bottom, right, top = src.bounds xs.extend([left, right]) ys.extend([bottom, top]) dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys) # Resolution/pixel size if not res: res = first_res elif not np.iterable(res): res = (res, res) elif len(res) == 1: res = (res[0], res[0]) if target_aligned_pixels: dst_w = math.floor(dst_w / res[0]) * res[0] dst_e = math.ceil(dst_e / res[0]) * res[0] dst_s = math.floor(dst_s / res[1]) * res[1] dst_n = math.ceil(dst_n / res[1]) * res[1] # Compute output array shape. We guarantee it will cover the output # bounds completely output_width = int(round((dst_e - dst_w) / res[0])) output_height = int(round((dst_n - dst_s) / res[1])) output_transform = Affine.translation(dst_w, dst_n) * Affine.scale( res[0], -res[1]) if dtype is not None: dt = dtype logger.debug("Set dtype: %s", dt) out_profile = first_profile out_profile.update(**(dst_kwds or {})) out_profile["transform"] = output_transform out_profile["height"] = output_height out_profile["width"] = output_width out_profile["count"] = output_count if nodata is not None: out_profile["nodata"] = nodata # create destination array dest = np.zeros((output_count, output_height, output_width), dtype=dt) if nodata is not None: nodataval = nodata logger.debug("Set nodataval: %r", nodataval) if nodataval is not None: # Only fill if the nodataval is within dtype's range inrange = False if np.issubdtype(dt, np.integer): info = np.iinfo(dt) inrange = (info.min <= nodataval <= info.max) elif np.issubdtype(dt, np.floating): if math.isnan(nodataval): inrange = True else: info = np.finfo(dt) inrange = (info.min <= nodataval <= info.max) if inrange: dest.fill(nodataval) else: warnings.warn( "The nodata value, %s, is beyond the valid " "range of the chosen data type, %s. Consider overriding it " "using the --nodata option for better results." % (nodataval, dt)) else: nodataval = 0 for idx, dataset in enumerate(datasets): with dataset_opener(dataset) as src: # Real World (tm) use of boundless reads. # This approach uses the maximum amount of memory to solve the # problem. Making it more efficient is a TODO. if disjoint_bounds((dst_w, dst_s, dst_e, dst_n), src.bounds): logger.debug("Skipping source: src=%r, window=%r", src) continue # 1. Compute spatial intersection of destination and source src_w, src_s, src_e, src_n = src.bounds int_w = src_w if src_w > dst_w else dst_w int_s = src_s if src_s > dst_s else dst_s int_e = src_e if src_e < dst_e else dst_e int_n = src_n if src_n < dst_n else dst_n # 2. Compute the source window src_window = windows.from_bounds(int_w, int_s, int_e, int_n, src.transform, precision=precision) # 3. Compute the destination window dst_window = windows.from_bounds(int_w, int_s, int_e, int_n, output_transform, precision=precision) # 4. Read data in source window into temp src_window_rnd_shp = src_window.round_shape(pixel_precision=0) dst_window_rnd_shp = dst_window.round_shape(pixel_precision=0) dst_window_rnd_off = dst_window_rnd_shp.round_offsets( pixel_precision=0) temp_height, temp_width = ( dst_window_rnd_off.height, dst_window_rnd_off.width, ) temp_shape = (src_count, temp_height, temp_width) temp_src = src.read( out_shape=temp_shape, window=src_window_rnd_shp, boundless=False, masked=True, indexes=indexes, resampling=resampling, ) # 5. Copy elements of temp into dest roff, coff = ( max(0, dst_window_rnd_off.row_off), max(0, dst_window_rnd_off.col_off), ) region = dest[:, roff:roff + temp_height, coff:coff + temp_width] if math.isnan(nodataval): region_mask = np.isnan(region) elif np.issubdtype(region.dtype, np.floating): region_mask = np.isclose(region, nodataval) else: region_mask = region == nodataval # Ensure common shape, resolving issue #2202. temp = temp_src[:, :region.shape[1], :region.shape[2]] temp_mask = np.ma.getmask(temp) copyto(region, temp, region_mask, temp_mask, index=idx, roff=roff, coff=coff) if dst_path is None: return dest, output_transform else: with rasterio.open(dst_path, "w", **out_profile) as dst: dst.write(dest) if first_colormap: dst.write_colormap(1, first_colormap)
def test_disjoint_bounds_issue1459_south_up(): a = BoundingBox(left=0.0, bottom=1.0, right=1.0, top=0.0) b = BoundingBox(left=0.0, bottom=2.0, right=1.0, top=1.01) assert disjoint_bounds(a, b)
def test_disjoint_bounds_issue1459(): a = BoundingBox(left=478038, bottom=57155, right=703888, top=266344) b = BoundingBox(left=584184, bottom=469629, right=740727, top=626172) assert disjoint_bounds(a, b)
def clip(ctx, files, output, bounds, like, driver, projection, creation_options): """Clips a raster using projected or geographic bounds. \b $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif The values of --bounds are presumed to be from the coordinate reference system of the input dataset unless the --geographic option is used, in which case the values may be longitude and latitude bounds. Either JSON, for example "[west, south, east, north]", or plain text "west south east north" representations of a bounding box are acceptable. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. It can also be combined to read bounds of a feature dataset using Fiona: \b $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds) """ from rasterio.warp import transform_bounds with ctx.obj['env']: output, files = resolve_inout(files=files, output=output) input = files[0] with rasterio.open(input) as src: if bounds: if projection == 'geographic': bounds = transform_bounds('epsg:4326', src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') window = src.window(*bounds) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': driver, 'height': window[0][1] - window[0][0], 'width': window[1][1] - window[1][0], 'transform': src.window_transform(window) }) out_kwargs.update(**creation_options) with rasterio.open(output, 'w', **out_kwargs) as out: out.write(src.read(window=window))
def clip(ctx, files, output, bounds, like, driver, projection, creation_options): """Clips a raster using projected or geographic bounds. \b $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif The values of --bounds are presumed to be from the coordinate reference system of the input dataset unless the --geographic option is used, in which case the values may be longitude and latitude bounds. Either JSON, for example "[west, south, east, north]", or plain text "west south east north" representations of a bounding box are acceptable. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. It can also be combined to read bounds of a feature dataset using Fiona: \b $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds) """ from rasterio.warp import transform_bounds with ctx.obj['env']: output, files = resolve_inout(files=files, output=output) input = files[0] with rasterio.open(input) as src: if bounds: if projection == 'geographic': bounds = transform_bounds('epsg:4326', src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') bounds_window = src.window(*bounds) bounds_window = bounds_window.intersection( Window(0, 0, src.width, src.height)) # Get the window with integer height # and width that contains the bounds window. out_window = bounds_window.round_lengths(op='ceil') height = int(out_window.height) width = int(out_window.width) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': driver, 'height': height, 'width': width, 'transform': src.window_transform(out_window)}) out_kwargs.update(**creation_options) with rasterio.open(output, 'w', **out_kwargs) as out: out.write(src.read(window=out_window, out_shape=(src.count, height, width)))
def rasterize( ctx, files, output, driver, like, bounds, dimensions, res, src_crs, all_touched, default_value, fill, property, creation_options): """Rasterize GeoJSON into a new or existing raster. If the output raster exists, rio-rasterize will rasterize feature values into all bands of that raster. The GeoJSON is assumed to be in the same coordinate reference system as the output unless --src-crs is provided. --default_value or property values when using --property must be using a data type valid for the data type of that raster. If a template raster is provided using the --like option, the affine transform and data type from that raster will be used to create the output. Only a single band will be output. The GeoJSON is assumed to be in the same coordinate reference system unless --src-crs is provided. --default_value or property values when using --property must be using a data type valid for the data type of that raster. --driver, --bounds, --dimensions, and --res are ignored when output exists or --like raster is provided If the output does not exist and --like raster is not provided, the input GeoJSON will be used to determine the bounds of the output unless provided using --bounds. --dimensions or --res are required in this case. If --res is provided, the bottom and right coordinates of bounds are ignored. Note: The GeoJSON is not projected to match the coordinate reference system of the output or --like rasters at this time. This functionality may be added in the future. """ from rasterio._base import is_geographic_crs, is_same_crs from rasterio.features import rasterize from rasterio.features import bounds as calculate_bounds verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1 output, files = resolve_inout(files=files, output=output) has_src_crs = src_crs is not None src_crs = src_crs or 'EPSG:4326' # If values are actually meant to be integers, we need to cast them # as such or rasterize creates floating point outputs if default_value == int(default_value): default_value = int(default_value) if fill == int(fill): fill = int(fill) with rasterio.drivers(CPL_DEBUG=verbosity > 2): def feature_value(feature): if property and 'properties' in feature: return feature['properties'].get(property, default_value) return default_value with click.open_file(files.pop(0) if files else '-') as gj_f: geojson = json.loads(gj_f.read()) if 'features' in geojson: geometries = [] for f in geojson['features']: geometries.append((f['geometry'], feature_value(f))) elif 'geometry' in geojson: geometries = ((geojson['geometry'], feature_value(geojson)), ) else: raise click.BadParameter('Invalid GeoJSON', param=input, param_hint='input') geojson_bounds = geojson.get('bbox', calculate_bounds(geojson)) if os.path.exists(output): with rasterio.open(output, 'r+') as out: if has_src_crs and not is_same_crs(src_crs, out.crs): raise click.BadParameter('GeoJSON does not match crs of ' 'existing output raster', param='input', param_hint='input') if disjoint_bounds(geojson_bounds, out.bounds): click.echo("GeoJSON outside bounds of existing output " "raster. Are they in different coordinate " "reference systems?", err=True) meta = out.meta.copy() result = rasterize( geometries, out_shape=(meta['height'], meta['width']), transform=meta.get('affine', meta['transform']), all_touched=all_touched, dtype=meta.get('dtype', None), default_value=default_value, fill = fill) for bidx in range(1, meta['count'] + 1): data = out.read(bidx, masked=True) # Burn in any non-fill pixels, and update mask accordingly ne = result != fill data[ne] = result[ne] data.mask[ne] = False out.write_band(bidx, data) else: if like is not None: template_ds = rasterio.open(like) if has_src_crs and not is_same_crs(src_crs, template_ds.crs): raise click.BadParameter('GeoJSON does not match crs of ' '--like raster', param='input', param_hint='input') if disjoint_bounds(geojson_bounds, template_ds.bounds): click.echo("GeoJSON outside bounds of --like raster. " "Are they in different coordinate reference " "systems?", err=True) kwargs = template_ds.meta.copy() kwargs['count'] = 1 # DEPRECATED # upgrade transform to affine object or we may get an invalid # transform set on output kwargs['transform'] = template_ds.affine template_ds.close() else: bounds = bounds or geojson_bounds if is_geographic_crs(src_crs): if (bounds[0] < -180 or bounds[2] > 180 or bounds[1] < -80 or bounds[3] > 80): raise click.BadParameter( "Bounds are beyond the valid extent for " "EPSG:4326.", ctx, param=bounds, param_hint='--bounds') if dimensions: width, height = dimensions res = ( (bounds[2] - bounds[0]) / float(width), (bounds[3] - bounds[1]) / float(height) ) else: if not res: raise click.BadParameter( 'pixel dimensions are required', ctx, param=res, param_hint='--res') elif len(res) == 1: res = (res[0], res[0]) width = max(int(ceil((bounds[2] - bounds[0]) / float(res[0]))), 1) height = max(int(ceil((bounds[3] - bounds[1]) / float(res[1]))), 1) src_crs = src_crs.upper() if not src_crs.count('EPSG:'): raise click.BadParameter( 'invalid CRS. Must be an EPSG code.', ctx, param=src_crs, param_hint='--src_crs') kwargs = { 'count': 1, 'crs': src_crs, 'width': width, 'height': height, 'transform': Affine(res[0], 0, bounds[0], 0, -res[1], bounds[3]), 'driver': driver } kwargs.update(**creation_options) result = rasterize( geometries, out_shape=(kwargs['height'], kwargs['width']), transform=kwargs.get('affine', kwargs['transform']), all_touched=all_touched, dtype=kwargs.get('dtype', None), default_value=default_value, fill = fill) if 'dtype' not in kwargs: kwargs['dtype'] = result.dtype kwargs['nodata'] = fill with rasterio.open(output, 'w', **kwargs) as out: out.write_band(1, result)
def mask( ctx, files, output, geojson_mask, driver, all_touched, crop, invert, creation_options): """Masks in raster using GeoJSON features (masks out all areas not covered by features), and optionally crops the output raster to the extent of the features. Features are assumed to be in the same coordinate reference system as the input raster. GeoJSON must be the first input file or provided from stdin: > rio mask input.tif output.tif --geojson-mask features.json > rio mask input.tif output.tif --geojson-mask - < features.json If the output raster exists, it will be completely overwritten with the results of this operation. The result is always equal to or within the bounds of the input raster. --crop and --invert options are mutually exclusive. --crop option is not valid if features are completely outside extent of input raster. """ from rasterio.features import geometry_mask from rasterio.features import bounds as calculate_bounds verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1 output, files = resolve_inout(files=files, output=output) input = files[0] if geojson_mask is None: click.echo('No GeoJSON provided, INPUT will be copied to OUTPUT', err=True) shutil.copy(input, output) return if crop and invert: click.echo('Invert option ignored when using --crop', err=True) invert = False with rasterio.drivers(CPL_DEBUG=verbosity > 2): try: with click.open_file(geojson_mask) as f: geojson = json.loads(f.read()) except ValueError: raise click.BadParameter('GeoJSON could not be read from ' '--geojson-mask or stdin', param_hint='--geojson-mask') if 'features' in geojson: geometries = (f['geometry'] for f in geojson['features']) elif 'geometry' in geojson: geometries = (geojson['geometry'], ) else: raise click.BadParameter('Invalid GeoJSON', param=input, param_hint='input') bounds = geojson.get('bbox', calculate_bounds(geojson)) with rasterio.open(input) as src: # If y pixel value is positive, then invert y dimension in bounds invert_y = src.affine.e > 0 src_bounds = src.bounds if invert_y: src_bounds = [src.bounds[0], src.bounds[3], src.bounds[2], src.bounds[1]] has_disjoint_bounds = disjoint_bounds(bounds, src_bounds) if crop: if has_disjoint_bounds: raise click.BadParameter('not allowed for GeoJSON outside ' 'the extent of the input raster', param=crop, param_hint='--crop') if invert_y: bounds = (bounds[0], bounds[3], bounds[2], bounds[1]) window = src.window(*bounds) transform = src.window_transform(window) (r1, r2), (c1, c2) = window mask_shape = (r2 - r1, c2 - c1) else: if has_disjoint_bounds: click.echo('GeoJSON outside bounds of existing output ' 'raster. Are they in different coordinate ' 'reference systems?', err=True) window = None transform = src.affine mask_shape = src.shape mask = geometry_mask( geometries, out_shape=mask_shape, transform=transform, all_touched=all_touched, invert=invert) meta = src.meta.copy() meta.update(**creation_options) meta.update({ 'driver': driver, 'height': mask.shape[0], 'width': mask.shape[1], 'transform': transform }) with rasterio.open(output, 'w', **meta) as out: for bidx in range(1, src.count + 1): img = src.read(bidx, masked=True, window=window) img.mask = img.mask | mask out.write_band(bidx, img.filled(src.nodatavals[bidx-1]))
def clip( ctx, files, output, bounds, like, driver, creation_options): """Clips a raster using bounds input directly or from a template raster. \b $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif If using --bounds, values must be in coordinate reference system of input. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. It can also be combined to read bounds of a feature dataset using Fiona: \b $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds) """ from rasterio.warp import transform_bounds verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1 with rasterio.drivers(CPL_DEBUG=verbosity > 2): output, files = resolve_inout(files=files, output=output) input = files[0] with rasterio.open(input) as src: if bounds: if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter('must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') window = src.window(*bounds) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': driver, 'height': window[0][1] - window[0][0], 'width': window[1][1] - window[1][0], 'transform': src.window_transform(window) }) out_kwargs.update(**creation_options) with rasterio.open(output, 'w', **out_kwargs) as out: out.write(src.read(window=window))
def clip(ctx, files, output, bounds, like, driver, creation_options): """Clips a raster using bounds input directly or from a template raster. \b $ rio clip input.tif output.tif --bounds xmin ymin xmax ymax $ rio clip input.tif output.tif --like template.tif If using --bounds, values must be in coordinate reference system of input. If using --like, bounds will automatically be transformed to match the coordinate reference system of the input. It can also be combined to read bounds of a feature dataset using Fiona: \b $ rio clip input.tif output.tif --bounds $(fio info features.shp --bounds) """ from rasterio.warp import transform_bounds verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1 with rasterio.drivers(CPL_DEBUG=verbosity > 2): output, files = resolve_inout(files=files, output=output) input = files[0] with rasterio.open(input) as src: if bounds: if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--bounds', param_hint='--bounds') elif like: with rasterio.open(like) as template_ds: bounds = template_ds.bounds if template_ds.crs != src.crs: bounds = transform_bounds(template_ds.crs, src.crs, *bounds) if disjoint_bounds(bounds, src.bounds): raise click.BadParameter( 'must overlap the extent of ' 'the input raster', param='--like', param_hint='--like') else: raise click.UsageError('--bounds or --like required') window = src.window(*bounds) out_kwargs = src.meta.copy() out_kwargs.update({ 'driver': driver, 'height': window[0][1] - window[0][0], 'width': window[1][1] - window[1][0], 'transform': src.window_transform(window) }) out_kwargs.update(**creation_options) with rasterio.open(output, 'w', **out_kwargs) as out: out.write(src.read(window=window))
def mask(ctx, files, output, geojson_mask, driver, all_touched, crop, invert, force_overwrite, creation_options): """Masks in raster using GeoJSON features (masks out all areas not covered by features), and optionally crops the output raster to the extent of the features. Features are assumed to be in the same coordinate reference system as the input raster. GeoJSON must be the first input file or provided from stdin: > rio mask input.tif output.tif --geojson-mask features.json > rio mask input.tif output.tif --geojson-mask - < features.json If the output raster exists, it will be completely overwritten with the results of this operation. The result is always equal to or within the bounds of the input raster. --crop and --invert options are mutually exclusive. --crop option is not valid if features are completely outside extent of input raster. """ from rasterio.features import geometry_mask from rasterio.features import bounds as calculate_bounds verbosity = (ctx.obj and ctx.obj.get('verbosity')) or 1 output, files = resolve_inout(files=files, output=output, force_overwrite=force_overwrite) input = files[0] if geojson_mask is None: click.echo('No GeoJSON provided, INPUT will be copied to OUTPUT', err=True) shutil.copy(input, output) return if crop and invert: click.echo('Invert option ignored when using --crop', err=True) invert = False with rasterio.drivers(CPL_DEBUG=verbosity > 2): try: with click.open_file(geojson_mask) as f: geojson = json.loads(f.read()) except ValueError: raise click.BadParameter( 'GeoJSON could not be read from ' '--geojson-mask or stdin', param_hint='--geojson-mask') if 'features' in geojson: geometries = (f['geometry'] for f in geojson['features']) elif 'geometry' in geojson: geometries = (geojson['geometry'], ) else: raise click.BadParameter('Invalid GeoJSON', param=input, param_hint='input') bounds = geojson.get('bbox', calculate_bounds(geojson)) with rasterio.open(input) as src: # If y pixel value is positive, then invert y dimension in bounds invert_y = src.affine.e > 0 src_bounds = src.bounds if invert_y: src_bounds = [ src.bounds[0], src.bounds[3], src.bounds[2], src.bounds[1] ] has_disjoint_bounds = disjoint_bounds(bounds, src_bounds) if crop: if has_disjoint_bounds: raise click.BadParameter( 'not allowed for GeoJSON outside ' 'the extent of the input raster', param=crop, param_hint='--crop') if invert_y: bounds = (bounds[0], bounds[3], bounds[2], bounds[1]) window = src.window(*bounds) transform = src.window_transform(window) (r1, r2), (c1, c2) = window mask_shape = (r2 - r1, c2 - c1) else: if has_disjoint_bounds: click.echo( 'GeoJSON outside bounds of existing output ' 'raster. Are they in different coordinate ' 'reference systems?', err=True) window = None transform = src.affine mask_shape = src.shape mask = geometry_mask(geometries, out_shape=mask_shape, transform=transform, all_touched=all_touched, invert=invert) meta = src.meta.copy() meta.update(**creation_options) meta.update({ 'driver': driver, 'height': mask.shape[0], 'width': mask.shape[1], 'transform': transform }) with rasterio.open(output, 'w', **meta) as out: for bidx in range(1, src.count + 1): img = src.read(bidx, masked=True, window=window) img.mask = img.mask | mask out.write_band(bidx, img.filled(src.nodatavals[bidx - 1]))