コード例 #1
0
def test_ray():
    """Test the ray result matches the sequential one
	"""

    for n, p in [[100, 10], [1000, 30], [1000, 100]]:

        X, y = make_classification(n_samples=n,
                                   n_features=p,
                                   n_informative=int(0.1 * p),
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.1,
                                   shift=0.0,
                                   scale=1.0,
                                   shuffle=False,
                                   random_state=123)
        y = y[:, np.newaxis]

        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.2,
                                                            random_state=123)

        bnn = BnnBinaryClassifier(verbose=0).fit(X_train, y_train)
        M_F, V_F = bnn.logit_posterior(X_test)

        seq_result = rate(X_test, M_F, V_F)
        ray_seq_result = RATE_ray(X_test, M_F, V_F, n_jobs=1)
        ray_par_result = RATE_ray(X_test, M_F, V_F, n_jobs=2)
        assert np.array_equal(seq_result, ray_seq_result)
        assert np.array_equal(seq_result, ray_par_result)
コード例 #2
0
def test_input_shapes_classification():
    """Input dimensionality should match model's expectation
	(either from layers passed in constructor or first fit call)
	"""
    p = 100
    # First check default layer behaviour (p not set until fit)
    bnn = BnnBinaryClassifier()
    bnn.fit(np.random.randn(100, p), np.random.randint(2, size=100))
    with pytest.raises(ValueError):
        bnn.fit(np.random.randn(100, p + 1), np.random.randint(2, size=100))

    # Now check if layers are provided
    bnn = BnnBinaryClassifier(layers=network_layers(p, 1))
    with pytest.raises(ValueError):
        bnn.fit(np.random.randn(p + 1, 102), np.random.randint(2, size=100))
コード例 #3
0
def test_var_params_classification():
    n, p = 100, 20
    bnn = BnnBinaryClassifier(network_layers(p, 1))
    bnn.fit(np.random.randn(n, p), np.random.randint(2, size=n))
    W_mean, W_var, b = bnn.var_params()
    assert W_mean.shape[0] == 128
    assert W_var.shape[0] == 128
    assert b.shape[0] == 1


# Same for r2 in regression

# Chech output shapes

# Test input shapes error handling

# test default constructors

# Check label exception raising

# Check accuracy metricc
コード例 #4
0
def test_H_classification():
    """The shape of H should match the network architecture
	"""
    n, p = 100, 20
    bnn = BnnBinaryClassifier(network_layers(p, 1))
    with pytest.raises(ValueError):
        H_arr = bnn.H(np.random.randn(n, p))
    bnn.fit(np.random.randn(n, p), np.random.randint(2, size=n))
    H_arr = bnn.H(np.random.randn(n, p))
    assert H_arr.shape == (n, 128)
コード例 #5
0
def test_label_types_classification():
    """Binary classifier only accepts bianry labels
	"""
    p = 100
    # First check default layer behaviour (p not set until fit)
    bnn = BnnBinaryClassifier()
    with pytest.raises(ValueError):
        X_train = np.random.randn(100, p)
        bnn.fit(X_train, np.random.rand(100))  # Float labels
        bnn.fit(X_train, np.random.randint(
            3, size=100))  # Multiclass classification labels
コード例 #6
0
def test_predictions_classification():
    """Binary classifier only predicts 0s and 1s for labels and values in
	[0,1] for prbabilities. Also checks shapes
	"""
    n, p = 100, 10
    n_test = 50
    n_mc_samples = 15
    #(X_train, y_train), (X_test, y_test) = toy_binary_classification_data(n, p)
    bnn = BnnBinaryClassifier(verbose=0)
    bnn.fit(np.random.randn(n, p), np.random.randint(2, size=n))
    yhat_labels = bnn.predict(np.random.randn(n_test, p))
    assert yhat_labels.shape[0] == n_test
    assert np.sum(yhat_labels == 0) + np.sum(yhat_labels == 1) == n_test
    yhat_proba = bnn.predict_proba(np.random.randn(n_test, p))
    assert np.all([prob >= 0.0 or prob <= 1.0 for prob in yhat_proba])
    yhat_labels_samples = bnn.predict_samples(np.random.randn(n_test, p),
                                              n_mc_samples)
    assert yhat_labels_samples.shape == (n_mc_samples, n_test)
    assert np.all([val in [0, 1] for val in yhat_labels_samples.flat])
    yhat_proba_samples = bnn.predict_proba_samples(np.random.randn(n_test, p),
                                                   n_mc_samples)
    assert yhat_proba_samples.shape == (n_mc_samples, n_test)
    assert np.all(
        [prob >= 0.0 or prob <= 1.0 for prob in yhat_proba_samples.flat])
コード例 #7
0
def test_unfitted_models():
    """Calling predict before fit should raise exception
	"""
    bnn = BnnBinaryClassifier()
    with pytest.raises(NotFittedError):
        bnn.predict(np.random.randn(10, 3))
        bnn.predict_proba(np.random.randn(10, 3))
        bnn.predict_samples(np.random.randn(10, 3))
        bnn.predict_proba_samples(np.random.randn(10, 3))
    bnn = BnnScalarRegressor()
    with pytest.raises(NotFittedError):
        bnn.predict(np.random.randn(10, 3))
        bnn.predict_samples(np.random.randn(10, 3))
コード例 #8
0
                        out["metadata"]["polynomial_powers"][dict_key].append(pf.powers_[effect_size_mask!=0,:])
                        out["metadata"]["effect_sizes"][dict_key].append(effect_sizes[effect_size_mask!=0])

                        # Add decoy variables
                        X = np.hstack([X, np.random.randn(n, p_decoy)])

                        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=seed)

                        print("Number of class 1: {},\tClass 2:{}".format(y.shape[0]-np.sum(y), np.sum(y)))

                        #
                        # Fit the models and evaluate their test accuracy
                        #

                        # BNN
                        bnn = BnnBinaryClassifier(verbose=0, n_mc_samples=n_mc_samples)
                        bnn.fit(X_train, y_train, **nn_train_args)
                        test_scores = add_test_score("Bayesian neural network", bnn.score(X_test, y_test), dict_key, repeat_idx)

                        nn = get_deterministic_nn(bnn)
                        nn.fit(X_train, y_train, verbose=0, **nn_train_args)
                        test_scores = add_test_score("neural network", nn.evaluate(X_test, y_test)[1], dict_key, repeat_idx)

                        #
                        # Variable importance
                        #

                        # LASSO
                        lasso_starttime = time.time()
                        logreg_l1 = LogisticRegressionCV(
                            Cs=10,