コード例 #1
0
    def _apply(
        self,
        fn: Any,
        remote_args: dict,
        block_list: BlockList,
        clear_input_blocks: bool,
        name: Optional[str] = None,
    ) -> BlockList:
        """Note: this is not part of the Dataset public API."""
        context = DatasetContext.get_current()

        blocks_in = block_list.get_blocks_with_metadata()

        # Early release block references.
        if clear_input_blocks:
            block_list.clear()

        orig_num_blocks = len(blocks_in)
        results = []
        if name is None:
            name = "map"
        name = name.title()
        map_bar = ProgressBar(name, total=orig_num_blocks)

        class BlockWorker:
            def ready(self):
                return "ok"

            def map_block_split(self, block: Block,
                                input_files: List[str]) -> BlockPartition:
                return _map_block_split(block, fn, input_files)

            @ray.method(num_returns=2)
            def map_block_nosplit(
                    self, block: Block,
                    input_files: List[str]) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(block, fn, input_files)

        if not remote_args:
            remote_args["num_cpus"] = 1

        remote_args["scheduling_strategy"] = context.scheduling_strategy

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        workers = [BlockWorker.remote() for _ in range(self.min_size)]
        tasks = {w.ready.remote(): w for w in workers}
        tasks_in_flight = collections.defaultdict(int)
        metadata_mapping = {}
        block_indices = {}
        ready_workers = set()

        while len(results) < orig_num_blocks:
            ready, _ = ray.wait(list(tasks.keys()),
                                timeout=0.01,
                                num_returns=1,
                                fetch_local=False)
            if not ready:
                if (len(workers) < self.max_size
                        and len(ready_workers) / len(workers) > 0.8):
                    w = BlockWorker.remote()
                    workers.append(w)
                    tasks[w.ready.remote()] = w
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers),
                            len(workers) - len(ready_workers)))
                continue

            [obj_id] = ready
            worker = tasks.pop(obj_id)

            # Process task result.
            if worker in ready_workers:
                results.append(obj_id)
                tasks_in_flight[worker] -= 1
                map_bar.update(1)
            else:
                ready_workers.add(worker)
                map_bar.set_description(
                    "Map Progress ({} actors {} pending)".format(
                        len(ready_workers),
                        len(workers) - len(ready_workers)))

            # Schedule a new task.
            while (blocks_in and tasks_in_flight[worker] <
                   self.max_tasks_in_flight_per_actor):
                block, meta = blocks_in.pop()
                if context.block_splitting_enabled:
                    ref = worker.map_block_split.remote(
                        block, meta.input_files)
                else:
                    ref, meta_ref = worker.map_block_nosplit.remote(
                        block, meta.input_files)
                    metadata_mapping[ref] = meta_ref
                tasks[ref] = worker
                block_indices[ref] = len(blocks_in)
                tasks_in_flight[worker] += 1

        map_bar.close()
        new_blocks, new_metadata = [], []
        # Put blocks in input order.
        results.sort(key=block_indices.get)
        if context.block_splitting_enabled:
            for result in ray.get(results):
                for block, metadata in result:
                    new_blocks.append(block)
                    new_metadata.append(metadata)
        else:
            for block in results:
                new_blocks.append(block)
                new_metadata.append(metadata_mapping[block])
            new_metadata = ray.get(new_metadata)
        return BlockList(new_blocks, new_metadata)
コード例 #2
0
ファイル: compute.py プロジェクト: parasj/ray
    def _apply(
        self,
        block_fn: BlockTransform,
        remote_args: dict,
        block_list: BlockList,
        clear_input_blocks: bool,
        name: Optional[str] = None,
        fn: Optional[UDF] = None,
        fn_args: Optional[Iterable[Any]] = None,
        fn_kwargs: Optional[Dict[str, Any]] = None,
        fn_constructor_args: Optional[Iterable[Any]] = None,
        fn_constructor_kwargs: Optional[Dict[str, Any]] = None,
    ) -> BlockList:
        """Note: this is not part of the Dataset public API."""
        if fn_args is None:
            fn_args = tuple()
        if fn_kwargs is None:
            fn_kwargs = {}
        if fn_constructor_args is None:
            fn_constructor_args = tuple()
        if fn_constructor_kwargs is None:
            fn_constructor_kwargs = {}

        context = DatasetContext.get_current()

        blocks_in = block_list.get_blocks_with_metadata()

        # Early release block references.
        if clear_input_blocks:
            block_list.clear()

        orig_num_blocks = len(blocks_in)
        results = []
        if name is None:
            name = "map"
        name = name.title()
        map_bar = ProgressBar(name, total=orig_num_blocks)

        class BlockWorker:
            def __init__(
                self,
                *fn_constructor_args: Any,
                **fn_constructor_kwargs: Any,
            ):
                if not isinstance(fn, CallableClass):
                    if fn_constructor_args or fn_constructor_kwargs:
                        raise ValueError(
                            "fn_constructor_{kw}args only valid for CallableClass "
                            f"UDFs, but got: {fn}"
                        )
                    self.fn = fn
                else:
                    self.fn = fn(*fn_constructor_args, **fn_constructor_kwargs)

            def ready(self):
                return "ok"

            def map_block_split(
                self,
                block: Block,
                input_files: List[str],
                *fn_args,
                **fn_kwargs,
            ) -> BlockPartition:
                return _map_block_split(
                    block, block_fn, input_files, self.fn, *fn_args, **fn_kwargs
                )

            @ray.method(num_returns=2)
            def map_block_nosplit(
                self,
                block: Block,
                input_files: List[str],
                *fn_args,
                **fn_kwargs,
            ) -> Tuple[Block, BlockMetadata]:
                return _map_block_nosplit(
                    block, block_fn, input_files, self.fn, *fn_args, **fn_kwargs
                )

        if "num_cpus" not in remote_args:
            remote_args["num_cpus"] = 1

        if "scheduling_strategy" not in remote_args:
            ctx = DatasetContext.get_current()
            if ctx.scheduling_strategy == DEFAULT_SCHEDULING_STRATEGY:
                remote_args["scheduling_strategy"] = "SPREAD"
            else:
                remote_args["scheduling_strategy"] = ctx.scheduling_strategy

        BlockWorker = ray.remote(**remote_args)(BlockWorker)

        workers = [
            BlockWorker.remote(*fn_constructor_args, **fn_constructor_kwargs)
            for _ in range(self.min_size)
        ]
        tasks = {w.ready.remote(): w for w in workers}
        tasks_in_flight = collections.defaultdict(int)
        metadata_mapping = {}
        block_indices = {}
        ready_workers = set()

        try:
            while len(results) < orig_num_blocks:
                ready, _ = ray.wait(
                    list(tasks.keys()), timeout=0.01, num_returns=1, fetch_local=False
                )
                if not ready:
                    if (
                        len(workers) < self.max_size
                        and len(ready_workers) / len(workers)
                        > self.ready_to_total_workers_ratio
                    ):
                        w = BlockWorker.remote(
                            *fn_constructor_args, **fn_constructor_kwargs
                        )
                        workers.append(w)
                        tasks[w.ready.remote()] = w
                        map_bar.set_description(
                            "Map Progress ({} actors {} pending)".format(
                                len(ready_workers), len(workers) - len(ready_workers)
                            )
                        )
                    continue

                [obj_id] = ready
                worker = tasks.pop(obj_id)

                # Process task result.
                if worker in ready_workers:
                    results.append(obj_id)
                    tasks_in_flight[worker] -= 1
                    map_bar.update(1)
                else:
                    ready_workers.add(worker)
                    map_bar.set_description(
                        "Map Progress ({} actors {} pending)".format(
                            len(ready_workers), len(workers) - len(ready_workers)
                        )
                    )

                # Schedule a new task.
                while (
                    blocks_in
                    and tasks_in_flight[worker] < self.max_tasks_in_flight_per_actor
                ):
                    block, meta = blocks_in.pop()
                    if context.block_splitting_enabled:
                        ref = worker.map_block_split.remote(
                            block,
                            meta.input_files,
                            *fn_args,
                            **fn_kwargs,
                        )
                    else:
                        ref, meta_ref = worker.map_block_nosplit.remote(
                            block,
                            meta.input_files,
                            *fn_args,
                            **fn_kwargs,
                        )
                        metadata_mapping[ref] = meta_ref
                    tasks[ref] = worker
                    block_indices[ref] = len(blocks_in)
                    tasks_in_flight[worker] += 1

            map_bar.close()
            self.num_workers += len(workers)
            new_blocks, new_metadata = [], []
            # Put blocks in input order.
            results.sort(key=block_indices.get)
            if context.block_splitting_enabled:
                for result in ray.get(results):
                    for block, metadata in result:
                        new_blocks.append(block)
                        new_metadata.append(metadata)
            else:
                for block in results:
                    new_blocks.append(block)
                    new_metadata.append(metadata_mapping[block])
                new_metadata = ray.get(new_metadata)
            return BlockList(new_blocks, new_metadata)

        except Exception as e:
            try:
                for worker in workers:
                    ray.kill(worker)
            except Exception as err:
                logger.exception(f"Error killing workers: {err}")
            finally:
                raise e