def run_re3(self, rl_algorithm): """Tests RE3 for PPO and SAC. Both the on-policy and off-policy setups are validated. """ if rl_algorithm == "PPO": config = ppo.PPOConfig().to_dict() algo_cls = ppo.PPO beta_schedule = "constant" elif rl_algorithm == "SAC": config = sac.SACConfig().to_dict() algo_cls = sac.SAC beta_schedule = "linear_decay" class RE3Callbacks(RE3UpdateCallbacks, config["callbacks"]): pass config["env"] = "Pendulum-v1" config["callbacks"] = RE3Callbacks config["exploration_config"] = { "type": "RE3", "embeds_dim": 128, "beta_schedule": beta_schedule, "sub_exploration": { "type": "StochasticSampling", }, } num_iterations = 30 algo = algo_cls(config=config) learnt = False for i in range(num_iterations): result = algo.train() print(result) if result["episode_reward_max"] > -900.0: print("Reached goal after {} iters!".format(i)) learnt = True break algo.stop() self.assertTrue(learnt)
def _import_sac(): import ray.rllib.algorithms.sac as sac return sac.SAC, sac.SACConfig().to_dict()
def test_sac_compilation(self): """Tests whether SAC can be built with all frameworks.""" config = (sac.SACConfig().training( n_step=3, twin_q=True, replay_buffer_config={ "learning_starts": 0, "capacity": 40000 }, store_buffer_in_checkpoints=True, train_batch_size=10, ).rollouts(num_rollout_workers=0, rollout_fragment_length=10)) num_iterations = 1 ModelCatalog.register_custom_model("batch_norm", KerasBatchNormModel) ModelCatalog.register_custom_model("batch_norm_torch", TorchBatchNormModel) image_space = Box(-1.0, 1.0, shape=(84, 84, 3)) simple_space = Box(-1.0, 1.0, shape=(3, )) tune.register_env( "random_dict_env", lambda _: RandomEnv({ "observation_space": Dict({ "a": simple_space, "b": Discrete(2), "c": image_space, }), "action_space": Box(-1.0, 1.0, shape=(1, )), }), ) tune.register_env( "random_tuple_env", lambda _: RandomEnv({ "observation_space": Tuple([simple_space, Discrete(2), image_space]), "action_space": Box(-1.0, 1.0, shape=(1, )), }), ) for fw in framework_iterator(config, with_eager_tracing=True): # Test for different env types (discrete w/ and w/o image, + cont). for env in [ "random_dict_env", "random_tuple_env", # "MsPacmanNoFrameskip-v4", "CartPole-v0", ]: print("Env={}".format(env)) # Test making the Q-model a custom one for CartPole, otherwise, # use the default model. config.q_model_config["custom_model"] = ( "batch_norm{}".format("_torch" if fw == "torch" else "") if env == "CartPole-v0" else None) trainer = config.build(env=env) for i in range(num_iterations): results = trainer.train() check_train_results(results) print(results) check_compute_single_action(trainer) # Test, whether the replay buffer is saved along with # a checkpoint (no point in doing it for all frameworks since # this is framework agnostic). if fw == "tf" and env == "CartPole-v0": checkpoint = trainer.save() new_trainer = sac.SAC(config, env=env) new_trainer.restore(checkpoint) # Get some data from the buffer and compare. data = trainer.local_replay_buffer.replay_buffers[ "default_policy"]._storage[:42 + 42] new_data = new_trainer.local_replay_buffer.replay_buffers[ "default_policy"]._storage[:42 + 42] check(data, new_data) new_trainer.stop() trainer.stop()
def test_sac_loss_function(self): """Tests SAC loss function results across all frameworks.""" config = (sac.SACConfig().training( twin_q=False, gamma=0.99, _deterministic_loss=True, q_model_config={ "fcnet_hiddens": [10] }, policy_model_config={ "fcnet_hiddens": [10] }, replay_buffer_config={ "learning_starts": 0 }, ).rollouts(num_rollout_workers=0).reporting( min_time_s_per_iteration=0, ).environment(env_config={ "simplex_actions": True }, ).debugging(seed=42)) map_ = { # Action net. "default_policy/fc_1/kernel": "action_model._hidden_layers.0." "_model.0.weight", "default_policy/fc_1/bias": "action_model._hidden_layers.0." "_model.0.bias", "default_policy/fc_out/kernel": "action_model._logits._model.0.weight", "default_policy/fc_out/bias": "action_model._logits._model.0.bias", "default_policy/value_out/kernel": "action_model." "_value_branch._model.0.weight", "default_policy/value_out/bias": "action_model." "_value_branch._model.0.bias", # Q-net. "default_policy/fc_1_1/kernel": "q_net._hidden_layers.0._model.0.weight", "default_policy/fc_1_1/bias": "q_net._hidden_layers.0._model.0.bias", "default_policy/fc_out_1/kernel": "q_net._logits._model.0.weight", "default_policy/fc_out_1/bias": "q_net._logits._model.0.bias", "default_policy/value_out_1/kernel": "q_net." "_value_branch._model.0.weight", "default_policy/value_out_1/bias": "q_net._value_branch._model.0.bias", "default_policy/log_alpha": "log_alpha", # Target action-net. "default_policy/fc_1_2/kernel": "action_model." "_hidden_layers.0._model.0.weight", "default_policy/fc_1_2/bias": "action_model." "_hidden_layers.0._model.0.bias", "default_policy/fc_out_2/kernel": "action_model._logits._model.0.weight", "default_policy/fc_out_2/bias": "action_model._logits._model.0.bias", "default_policy/value_out_2/kernel": "action_model." "_value_branch._model.0.weight", "default_policy/value_out_2/bias": "action_model." "_value_branch._model.0.bias", # Target Q-net "default_policy/fc_1_3/kernel": "q_net._hidden_layers.0._model.0.weight", "default_policy/fc_1_3/bias": "q_net._hidden_layers.0._model.0.bias", "default_policy/fc_out_3/kernel": "q_net._logits._model.0.weight", "default_policy/fc_out_3/bias": "q_net._logits._model.0.bias", "default_policy/value_out_3/kernel": "q_net." "_value_branch._model.0.weight", "default_policy/value_out_3/bias": "q_net._value_branch._model.0.bias", "default_policy/log_alpha_1": "log_alpha", } env = SimpleEnv batch_size = 64 obs_size = (batch_size, 1) actions = np.random.random(size=(batch_size, 2)) # Batch of size=n. input_ = self._get_batch_helper(obs_size, actions, batch_size) # Simply compare loss values AND grads of all frameworks with each # other. prev_fw_loss = weights_dict = None expect_c, expect_a, expect_e, expect_t = None, None, None, None # History of tf-updated NN-weights over n training steps. tf_updated_weights = [] # History of input batches used. tf_inputs = [] for fw, sess in framework_iterator(config, frameworks=("tf", "torch"), session=True): # Generate Trainer and get its default Policy object. trainer = config.build(env=env) policy = trainer.get_policy() p_sess = None if sess: p_sess = policy.get_session() # Set all weights (of all nets) to fixed values. if weights_dict is None: # Start with the tf vars-dict. assert fw in ["tf2", "tf", "tfe"] weights_dict = policy.get_weights() if fw == "tfe": log_alpha = weights_dict[10] weights_dict = self._translate_tfe_weights( weights_dict, map_) else: assert fw == "torch" # Then transfer that to torch Model. model_dict = self._translate_weights_to_torch( weights_dict, map_) # Have to add this here (not a parameter in tf, but must be # one in torch, so it gets properly copied to the GPU(s)). model_dict["target_entropy"] = policy.model.target_entropy policy.model.load_state_dict(model_dict) policy.target_model.load_state_dict(model_dict) if fw == "tf": log_alpha = weights_dict["default_policy/log_alpha"] elif fw == "torch": # Actually convert to torch tensors (by accessing everything). input_ = policy._lazy_tensor_dict(input_) input_ = {k: input_[k] for k in input_.keys()} log_alpha = policy.model.log_alpha.detach().cpu().numpy()[0] # Only run the expectation once, should be the same anyways # for all frameworks. if expect_c is None: expect_c, expect_a, expect_e, expect_t = self._sac_loss_helper( input_, weights_dict, sorted(weights_dict.keys()), log_alpha, fw, gamma=config.gamma, sess=sess, ) # Get actual outs and compare to expectation AND previous # framework. c=critic, a=actor, e=entropy, t=td-error. if fw == "tf": c, a, e, t, tf_c_grads, tf_a_grads, tf_e_grads = p_sess.run( [ policy.critic_loss, policy.actor_loss, policy.alpha_loss, policy.td_error, policy.optimizer().compute_gradients( policy.critic_loss[0], [ v for v in policy.model.q_variables() if "value_" not in v.name ], ), policy.optimizer().compute_gradients( policy.actor_loss, [ v for v in policy.model.policy_variables() if "value_" not in v.name ], ), policy.optimizer().compute_gradients( policy.alpha_loss, policy.model.log_alpha), ], feed_dict=policy._get_loss_inputs_dict(input_, shuffle=False), ) tf_c_grads = [g for g, v in tf_c_grads] tf_a_grads = [g for g, v in tf_a_grads] tf_e_grads = [g for g, v in tf_e_grads] elif fw == "tfe": with tf.GradientTape() as tape: tf_loss(policy, policy.model, None, input_) c, a, e, t = ( policy.critic_loss, policy.actor_loss, policy.alpha_loss, policy.td_error, ) vars = tape.watched_variables() tf_c_grads = tape.gradient(c[0], vars[6:10]) tf_a_grads = tape.gradient(a, vars[2:6]) tf_e_grads = tape.gradient(e, vars[10]) elif fw == "torch": loss_torch(policy, policy.model, None, input_) c, a, e, t = ( policy.get_tower_stats("critic_loss")[0], policy.get_tower_stats("actor_loss")[0], policy.get_tower_stats("alpha_loss")[0], policy.get_tower_stats("td_error")[0], ) # Test actor gradients. policy.actor_optim.zero_grad() assert all(v.grad is None for v in policy.model.q_variables()) assert all(v.grad is None for v in policy.model.policy_variables()) assert policy.model.log_alpha.grad is None a.backward() # `actor_loss` depends on Q-net vars (but these grads must # be ignored and overridden in critic_loss.backward!). assert not all( torch.mean(v.grad) == 0 for v in policy.model.policy_variables()) assert not all( torch.min(v.grad) == 0 for v in policy.model.policy_variables()) assert policy.model.log_alpha.grad is None # Compare with tf ones. torch_a_grads = [ v.grad for v in policy.model.policy_variables() if v.grad is not None ] check(tf_a_grads[2], np.transpose(torch_a_grads[0].detach().cpu())) # Test critic gradients. policy.critic_optims[0].zero_grad() assert all( torch.mean(v.grad) == 0.0 for v in policy.model.q_variables() if v.grad is not None) assert all( torch.min(v.grad) == 0.0 for v in policy.model.q_variables() if v.grad is not None) assert policy.model.log_alpha.grad is None c[0].backward() assert not all( torch.mean(v.grad) == 0 for v in policy.model.q_variables() if v.grad is not None) assert not all( torch.min(v.grad) == 0 for v in policy.model.q_variables() if v.grad is not None) assert policy.model.log_alpha.grad is None # Compare with tf ones. torch_c_grads = [v.grad for v in policy.model.q_variables()] check(tf_c_grads[0], np.transpose(torch_c_grads[2].detach().cpu())) # Compare (unchanged(!) actor grads) with tf ones. torch_a_grads = [ v.grad for v in policy.model.policy_variables() ] check(tf_a_grads[2], np.transpose(torch_a_grads[0].detach().cpu())) # Test alpha gradient. policy.alpha_optim.zero_grad() assert policy.model.log_alpha.grad is None e.backward() assert policy.model.log_alpha.grad is not None check(policy.model.log_alpha.grad, tf_e_grads) check(c, expect_c) check(a, expect_a) check(e, expect_e) check(t, expect_t) # Store this framework's losses in prev_fw_loss to compare with # next framework's outputs. if prev_fw_loss is not None: check(c, prev_fw_loss[0]) check(a, prev_fw_loss[1]) check(e, prev_fw_loss[2]) check(t, prev_fw_loss[3]) prev_fw_loss = (c, a, e, t) # Update weights from our batch (n times). for update_iteration in range(5): print("train iteration {}".format(update_iteration)) if fw == "tf": in_ = self._get_batch_helper(obs_size, actions, batch_size) tf_inputs.append(in_) # Set a fake-batch to use # (instead of sampling from replay buffer). buf = trainer.local_replay_buffer patch_buffer_with_fake_sampling_method(buf, in_) trainer.train() updated_weights = policy.get_weights() # Net must have changed. if tf_updated_weights: check( updated_weights["default_policy/fc_1/kernel"], tf_updated_weights[-1] ["default_policy/fc_1/kernel"], false=True, ) tf_updated_weights.append(updated_weights) # Compare with updated tf-weights. Must all be the same. else: tf_weights = tf_updated_weights[update_iteration] in_ = tf_inputs[update_iteration] # Set a fake-batch to use # (instead of sampling from replay buffer). buf = trainer.local_replay_buffer patch_buffer_with_fake_sampling_method(buf, in_) trainer.train() # Compare updated model. for tf_key in sorted(tf_weights.keys()): if re.search("_[23]|alpha", tf_key): continue tf_var = tf_weights[tf_key] torch_var = policy.model.state_dict()[map_[tf_key]] if tf_var.shape != torch_var.shape: check( tf_var, np.transpose(torch_var.detach().cpu()), atol=0.003, ) else: check(tf_var, torch_var, atol=0.003) # And alpha. check(policy.model.log_alpha, tf_weights["default_policy/log_alpha"]) # Compare target nets. for tf_key in sorted(tf_weights.keys()): if not re.search("_[23]", tf_key): continue tf_var = tf_weights[tf_key] torch_var = policy.target_model.state_dict()[ map_[tf_key]] if tf_var.shape != torch_var.shape: check( tf_var, np.transpose(torch_var.detach().cpu()), atol=0.003, ) else: check(tf_var, torch_var, atol=0.003) trainer.stop()