コード例 #1
0
class MaskedActionsMLP(DistributionalQModel, TFModelV2):
    """Tensorflow model for Envs that provide action masks with observations."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name, **kwargs):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name, **kwargs)

        # DictFlatteningPreprocessor, combines all obs components together
        # obs.shape for MLP should be a flattened game board obs
        original_space = obs_space.original_space['board']
        flat_obs_space = spaces.Box(low=np.min(original_space.low),
                                    high=np.max(original_space.high),
                                    shape=(np.prod(original_space.shape), ))
        self.mlp = FullyConnectedNetwork(flat_obs_space, action_space,
                                         num_outputs, model_config, name)
        self.register_variables(self.mlp.variables())

    def forward(self, input_dict, state, seq_lens):
        obs = flatten(input_dict['obs']['board'])
        action_mask = tf.maximum(tf.log(input_dict['obs']['action_mask']),
                                 tf.float32.min)
        model_out, _ = self.mlp({'obs': obs})
        return action_mask + model_out, state

    def value_function(self):
        return self.mlp.value_function()
コード例 #2
0
class CustomTFRPGModel(TFModelV2):
    """Example of interpreting repeated observations."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super().__init__(obs_space, action_space, num_outputs, model_config,
                         name)
        self.model = TFFCNet(obs_space, action_space, num_outputs,
                             model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        # The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS:
        # {
        #   'items', <tf.Tensor shape=(?, M, N, 5)>,
        #   'location', <tf.Tensor shape=(?, M, 2)>,
        #   'status', <tf.Tensor shape=(?, M, 10)>,
        # }
        print("The unpacked input tensors:", input_dict["obs"])
        print()
        print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim())
        print()
        if tf.executing_eagerly():
            print("Fully unbatched", input_dict["obs"].unbatch_all())
            print()
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
コード例 #3
0
ファイル: rl_utils.py プロジェクト: grossmann-group/or-gym
class VMActionMaskModel(TFModelV2):
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(51, 3),
                 action_embed_size=50,
                 *args,
                 **kwargs):
        super(VMActionMaskModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name, *args, **kwargs)
        self.action_embed_model = FullyConnectedNetwork(
            spaces.Box(0, 1, shape=true_obs_shape), action_space,
            action_embed_size, model_config, name + "_action_embedding")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]
        action_embedding, _ = self.action_embed_model(
            {"obs": input_dict["obs"]["state"]})
        intent_vector = tf.expand_dims(action_embedding, 1)
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=1)
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
コード例 #4
0
class ParametricActionsModel(DistributionalQTFModel):
    """Parametric action model that handles the dot product and masking.
    This assumes the outputs are logits for a single Categorical action dist.
    Getting this to work with a more complex output (e.g., if the action space
    is a tuple of several distributions) is also possible but left as an
    exercise to the reader.
    """

    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(4, ),
                 action_embed_size=6,
                 **kw):
        super(ParametricActionsModel, self).__init__(
            obs_space, action_space, num_outputs, model_config, name, **kw)
        if model_config['custom_options']['spy']:
            true_obs_space = make_spy_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
        else:
            true_obs_space = make_blind_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks'])
        if model_config['custom_options']['extended']:
            action_embed_size = 6
        else:
            action_embed_size = 4
        total_dim = 0
        for space in true_obs_space:
            total_dim += get_preprocessor(space)(space).size
        self.action_embed_model = FullyConnectedNetwork(
            Box(-1, 1, shape = (total_dim,)), action_space, action_embed_size,
            model_config, name + "_action_embed")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Extract the available actions tensor from the observation.        
        avail_actions = input_dict["obs"]["avail_actions"]
        action_mask = input_dict["obs"]["action_mask"]
        # Compute the predicted action embedding
        action_embed, _ = self.action_embed_model({
            "obs": input_dict["obs"]["bitcoin"]
        })

        # Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the
        # avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE].
        intent_vector = tf.expand_dims(action_embed, 1)

        # Batch dot product => shape of logits is [BATCH, MAX_ACTIONS].
        action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=2)

        # Mask out invalid actions (use tf.float32.min for stability)
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        return action_logits + inf_mask, state
    def value_function(self):
        return self.action_embed_model.value_function()
コード例 #5
0
class CustomModel(TFModelV2):
    """Example of a custom model that just delegates to a fc-net."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CustomModel, self).__init__(obs_space, action_space, num_outputs,
                                          model_config, name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
コード例 #6
0
ファイル: rl_utils.py プロジェクト: grossmann-group/or-gym
class FCModel(TFModelV2):
    '''Fully Connected Model'''
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(FCModel, self).__init__(obs_space, action_space, num_outputs,
                                      model_config, name)
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def value_function(self):
        return self.model.value_function()
コード例 #7
0
class ParametricActionsModel(TFModelV2):
    """ Parametric model that handles varying action spaces"""
    def __init__(self,
                 obs_space,
                 action_space,
                 num_outputs,
                 model_config,
                 name,
                 true_obs_shape=(24, ),
                 action_embed_size=None):
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        if action_embed_size is None:
            action_embed_size = action_space.n  # this works for Discrete() action

        # we get the size of the output of the preprocessor automatically chosen by rllib for the real_obs space
        real_obs = obs_space.original_space['real_obs']
        true_obs_shape = get_preprocessor(real_obs)(
            real_obs).size  # this will we an integer
        # true_obs_shape = obs_space.original_space['real_obs']
        self.action_embed_model = FullyConnectedNetwork(
            obs_space=Box(-1, 1, shape=(true_obs_shape, )),
            action_space=action_space,
            num_outputs=action_embed_size,
            model_config=model_config,
            name=name + "_action_embed")
        self.base_model = self.action_embed_model.base_model
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        # Compute the predicted action probabilties
        # input_dict["obs"]["real_obs"] is a list of 1d tensors if the observation space is a Tuple while
        # it should be a tensor. When it is a list we concatenate the various 1d tensors
        obs_concat = input_dict["obs"]["real_obs"]
        if isinstance(obs_concat, list):
            obs_concat = tf.concat(values=flatten_list(obs_concat), axis=1)
        action_embed, _ = self.action_embed_model({"obs": obs_concat})

        # Mask out invalid actions (use tf.float32.min for stability)
        action_mask = input_dict["obs"]["action_mask"]
        inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min)
        return action_embed + inf_mask, state

    def value_function(self):
        return self.action_embed_model.value_function()
コード例 #8
0
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized value function."""
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_obs, opp_act) -> vf_pred
        obs = tf.keras.layers.Input(shape=(6, ), name="obs")
        opp_obs = tf.keras.layers.Input(shape=(6, ), name="opp_obs")
        opp_act = tf.keras.layers.Input(shape=(2, ), name="opp_act")
        concat_obs = tf.keras.layers.Concatenate(axis=1)(
            [obs, opp_obs, opp_act])
        central_vf_dense = tf.keras.layers.Dense(16,
                                                 activation=tf.nn.tanh,
                                                 name="c_vf_dense")(concat_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(inputs=[obs, opp_obs, opp_act],
                                         outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)

    @override(ModelV2)
    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def central_value_function(self, obs, opponent_obs, opponent_actions):
        return tf.reshape(
            self.central_vf(
                [obs, opponent_obs,
                 tf.one_hot(opponent_actions, 2)]), [-1])

    @override(ModelV2)
    def value_function(self):
        return self.model.value_function()  # not used
コード例 #9
0
class CentralizedCriticModel(TFModelV2):
    """Multi-agent model that implements a centralized VF."""

    # TODO(@evinitsky) make this work with more than boxes

    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        super(CentralizedCriticModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)
        # Base of the model
        self.model = FullyConnectedNetwork(obs_space, action_space,
                                           num_outputs, model_config, name)
        self.register_variables(self.model.variables())

        # Central VF maps (obs, opp_ops, opp_act) -> vf_pred
        self.max_num_agents = model_config['custom_options']['max_num_agents']
        self.obs_space_shape = obs_space.shape[0]
        other_obs = tf.keras.layers.Input(shape=(obs_space.shape[0] *
                                                 self.max_num_agents, ),
                                          name="opp_obs")
        central_vf_dense = tf.keras.layers.Dense(
            model_config['custom_options']['central_vf_size'],
            activation=tf.nn.tanh,
            name="c_vf_dense")(other_obs)
        central_vf_out = tf.keras.layers.Dense(
            1, activation=None, name="c_vf_out")(central_vf_dense)
        self.central_vf = tf.keras.Model(inputs=[other_obs],
                                         outputs=central_vf_out)
        self.register_variables(self.central_vf.variables)

    def forward(self, input_dict, state, seq_lens):
        return self.model.forward(input_dict, state, seq_lens)

    def central_value_function(self, obs, opponent_obs):
        return tf.reshape(self.central_vf([opponent_obs]), [-1])

    def value_function(self):
        return self.model.value_function()  # not used
コード例 #10
0
ファイル: PaModel.py プロジェクト: nicofirst1/rl_werewolf
class ParametricActionsModel(TFModelV2):
    """
    Parametric action model used to filter out invalid action from environment
    """
    def import_from_h5(self, h5_file):
        pass

    def __init__(
        self,
        obs_space,
        action_space,
        num_outputs,
        model_config,
        name,
    ):
        name = "Pa_model"
        super(ParametricActionsModel,
              self).__init__(obs_space, action_space, num_outputs,
                             model_config, name)

        # get real obs space, discarding action mask
        real_obs_space = obs_space.original_space.spaces['array_obs']

        # define action embed model
        self.action_embed_model = FullyConnectedNetwork(
            real_obs_space, action_space, num_outputs, model_config,
            name + "_action_embed")
        self.register_variables(self.action_embed_model.variables())

    def forward(self, input_dict, state, seq_lens):
        """
        Override forward pass to mask out invalid actions

               Arguments:
                   input_dict (dict): dictionary of input tensors, including "obs",
                       "obs_flat", "prev_action", "prev_reward", "is_training"
                   state (list): list of state tensors with sizes matching those
                       returned by get_initial_state + the batch dimension
                   seq_lens (Tensor): 1d tensor holding input sequence lengths

               Returns:
                   (outputs, state): The model output tensor of size
                       [BATCH, num_outputs]

               """
        obs = input_dict['obs']

        # extract action mask  [batch size, num players]
        action_mask = obs['action_mask']
        # extract original observations [batch size, obs size]
        array_obs = obs['array_obs']

        # Compute the predicted action embedding
        # size [batch size, num players * num players]
        action_embed, _ = self.action_embed_model({"obs": array_obs})

        # Mask out invalid actions (use tf.float32.min for stability)
        # size [batch size, num players * num players]
        inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min)
        inf_mask = tf.cast(inf_mask, tf.float32)

        masked_actions = action_embed + inf_mask

        # return masked action embed and state
        return masked_actions, state

    def value_function(self):
        return self.action_embed_model.value_function()