class MaskedActionsMLP(DistributionalQModel, TFModelV2): """Tensorflow model for Envs that provide action masks with observations.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name, **kwargs): super().__init__(obs_space, action_space, num_outputs, model_config, name, **kwargs) # DictFlatteningPreprocessor, combines all obs components together # obs.shape for MLP should be a flattened game board obs original_space = obs_space.original_space['board'] flat_obs_space = spaces.Box(low=np.min(original_space.low), high=np.max(original_space.high), shape=(np.prod(original_space.shape), )) self.mlp = FullyConnectedNetwork(flat_obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.mlp.variables()) def forward(self, input_dict, state, seq_lens): obs = flatten(input_dict['obs']['board']) action_mask = tf.maximum(tf.log(input_dict['obs']['action_mask']), tf.float32.min) model_out, _ = self.mlp({'obs': obs}) return action_mask + model_out, state def value_function(self): return self.mlp.value_function()
class CustomTFRPGModel(TFModelV2): """Example of interpreting repeated observations.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super().__init__(obs_space, action_space, num_outputs, model_config, name) self.model = TFFCNet(obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.model.variables()) def forward(self, input_dict, state, seq_lens): # The unpacked input tensors, where M=MAX_PLAYERS, N=MAX_ITEMS: # { # 'items', <tf.Tensor shape=(?, M, N, 5)>, # 'location', <tf.Tensor shape=(?, M, 2)>, # 'status', <tf.Tensor shape=(?, M, 10)>, # } print("The unpacked input tensors:", input_dict["obs"]) print() print("Unbatched repeat dim", input_dict["obs"].unbatch_repeat_dim()) print() if tf.executing_eagerly(): print("Fully unbatched", input_dict["obs"].unbatch_all()) print() return self.model.forward(input_dict, state, seq_lens) def value_function(self): return self.model.value_function()
class VMActionMaskModel(TFModelV2): def __init__(self, obs_space, action_space, num_outputs, model_config, name, true_obs_shape=(51, 3), action_embed_size=50, *args, **kwargs): super(VMActionMaskModel, self).__init__(obs_space, action_space, num_outputs, model_config, name, *args, **kwargs) self.action_embed_model = FullyConnectedNetwork( spaces.Box(0, 1, shape=true_obs_shape), action_space, action_embed_size, model_config, name + "_action_embedding") self.register_variables(self.action_embed_model.variables()) def forward(self, input_dict, state, seq_lens): avail_actions = input_dict["obs"]["avail_actions"] action_mask = input_dict["obs"]["action_mask"] action_embedding, _ = self.action_embed_model( {"obs": input_dict["obs"]["state"]}) intent_vector = tf.expand_dims(action_embedding, 1) action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=1) inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min) return action_logits + inf_mask, state def value_function(self): return self.action_embed_model.value_function()
class ParametricActionsModel(DistributionalQTFModel): """Parametric action model that handles the dot product and masking. This assumes the outputs are logits for a single Categorical action dist. Getting this to work with a more complex output (e.g., if the action space is a tuple of several distributions) is also possible but left as an exercise to the reader. """ def __init__(self, obs_space, action_space, num_outputs, model_config, name, true_obs_shape=(4, ), action_embed_size=6, **kw): super(ParametricActionsModel, self).__init__( obs_space, action_space, num_outputs, model_config, name, **kw) if model_config['custom_options']['spy']: true_obs_space = make_spy_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks']) else: true_obs_space = make_blind_space(model_config['custom_options']['parties'], model_config['custom_options']['blocks']) if model_config['custom_options']['extended']: action_embed_size = 6 else: action_embed_size = 4 total_dim = 0 for space in true_obs_space: total_dim += get_preprocessor(space)(space).size self.action_embed_model = FullyConnectedNetwork( Box(-1, 1, shape = (total_dim,)), action_space, action_embed_size, model_config, name + "_action_embed") self.register_variables(self.action_embed_model.variables()) def forward(self, input_dict, state, seq_lens): # Extract the available actions tensor from the observation. avail_actions = input_dict["obs"]["avail_actions"] action_mask = input_dict["obs"]["action_mask"] # Compute the predicted action embedding action_embed, _ = self.action_embed_model({ "obs": input_dict["obs"]["bitcoin"] }) # Expand the model output to [BATCH, 1, EMBED_SIZE]. Note that the # avail actions tensor is of shape [BATCH, MAX_ACTIONS, EMBED_SIZE]. intent_vector = tf.expand_dims(action_embed, 1) # Batch dot product => shape of logits is [BATCH, MAX_ACTIONS]. action_logits = tf.reduce_sum(avail_actions * intent_vector, axis=2) # Mask out invalid actions (use tf.float32.min for stability) inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min) return action_logits + inf_mask, state def value_function(self): return self.action_embed_model.value_function()
class CustomModel(TFModelV2): """Example of a custom model that just delegates to a fc-net.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(CustomModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) self.model = FullyConnectedNetwork(obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.model.variables()) def forward(self, input_dict, state, seq_lens): return self.model.forward(input_dict, state, seq_lens) def value_function(self): return self.model.value_function()
class FCModel(TFModelV2): '''Fully Connected Model''' def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(FCModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) self.model = FullyConnectedNetwork(obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.model.variables()) def forward(self, input_dict, state, seq_lens): return self.model.forward(input_dict, state, seq_lens) def value_function(self): return self.model.value_function()
class ParametricActionsModel(TFModelV2): """ Parametric model that handles varying action spaces""" def __init__(self, obs_space, action_space, num_outputs, model_config, name, true_obs_shape=(24, ), action_embed_size=None): super(ParametricActionsModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) if action_embed_size is None: action_embed_size = action_space.n # this works for Discrete() action # we get the size of the output of the preprocessor automatically chosen by rllib for the real_obs space real_obs = obs_space.original_space['real_obs'] true_obs_shape = get_preprocessor(real_obs)( real_obs).size # this will we an integer # true_obs_shape = obs_space.original_space['real_obs'] self.action_embed_model = FullyConnectedNetwork( obs_space=Box(-1, 1, shape=(true_obs_shape, )), action_space=action_space, num_outputs=action_embed_size, model_config=model_config, name=name + "_action_embed") self.base_model = self.action_embed_model.base_model self.register_variables(self.action_embed_model.variables()) def forward(self, input_dict, state, seq_lens): # Compute the predicted action probabilties # input_dict["obs"]["real_obs"] is a list of 1d tensors if the observation space is a Tuple while # it should be a tensor. When it is a list we concatenate the various 1d tensors obs_concat = input_dict["obs"]["real_obs"] if isinstance(obs_concat, list): obs_concat = tf.concat(values=flatten_list(obs_concat), axis=1) action_embed, _ = self.action_embed_model({"obs": obs_concat}) # Mask out invalid actions (use tf.float32.min for stability) action_mask = input_dict["obs"]["action_mask"] inf_mask = tf.maximum(tf.math.log(action_mask), tf.float32.min) return action_embed + inf_mask, state def value_function(self): return self.action_embed_model.value_function()
class CentralizedCriticModel(TFModelV2): """Multi-agent model that implements a centralized value function.""" def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(CentralizedCriticModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) # Base of the model self.model = FullyConnectedNetwork(obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.model.variables()) # Central VF maps (obs, opp_obs, opp_act) -> vf_pred obs = tf.keras.layers.Input(shape=(6, ), name="obs") opp_obs = tf.keras.layers.Input(shape=(6, ), name="opp_obs") opp_act = tf.keras.layers.Input(shape=(2, ), name="opp_act") concat_obs = tf.keras.layers.Concatenate(axis=1)( [obs, opp_obs, opp_act]) central_vf_dense = tf.keras.layers.Dense(16, activation=tf.nn.tanh, name="c_vf_dense")(concat_obs) central_vf_out = tf.keras.layers.Dense( 1, activation=None, name="c_vf_out")(central_vf_dense) self.central_vf = tf.keras.Model(inputs=[obs, opp_obs, opp_act], outputs=central_vf_out) self.register_variables(self.central_vf.variables) @override(ModelV2) def forward(self, input_dict, state, seq_lens): return self.model.forward(input_dict, state, seq_lens) def central_value_function(self, obs, opponent_obs, opponent_actions): return tf.reshape( self.central_vf( [obs, opponent_obs, tf.one_hot(opponent_actions, 2)]), [-1]) @override(ModelV2) def value_function(self): return self.model.value_function() # not used
class CentralizedCriticModel(TFModelV2): """Multi-agent model that implements a centralized VF.""" # TODO(@evinitsky) make this work with more than boxes def __init__(self, obs_space, action_space, num_outputs, model_config, name): super(CentralizedCriticModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) # Base of the model self.model = FullyConnectedNetwork(obs_space, action_space, num_outputs, model_config, name) self.register_variables(self.model.variables()) # Central VF maps (obs, opp_ops, opp_act) -> vf_pred self.max_num_agents = model_config['custom_options']['max_num_agents'] self.obs_space_shape = obs_space.shape[0] other_obs = tf.keras.layers.Input(shape=(obs_space.shape[0] * self.max_num_agents, ), name="opp_obs") central_vf_dense = tf.keras.layers.Dense( model_config['custom_options']['central_vf_size'], activation=tf.nn.tanh, name="c_vf_dense")(other_obs) central_vf_out = tf.keras.layers.Dense( 1, activation=None, name="c_vf_out")(central_vf_dense) self.central_vf = tf.keras.Model(inputs=[other_obs], outputs=central_vf_out) self.register_variables(self.central_vf.variables) def forward(self, input_dict, state, seq_lens): return self.model.forward(input_dict, state, seq_lens) def central_value_function(self, obs, opponent_obs): return tf.reshape(self.central_vf([opponent_obs]), [-1]) def value_function(self): return self.model.value_function() # not used
class ParametricActionsModel(TFModelV2): """ Parametric action model used to filter out invalid action from environment """ def import_from_h5(self, h5_file): pass def __init__( self, obs_space, action_space, num_outputs, model_config, name, ): name = "Pa_model" super(ParametricActionsModel, self).__init__(obs_space, action_space, num_outputs, model_config, name) # get real obs space, discarding action mask real_obs_space = obs_space.original_space.spaces['array_obs'] # define action embed model self.action_embed_model = FullyConnectedNetwork( real_obs_space, action_space, num_outputs, model_config, name + "_action_embed") self.register_variables(self.action_embed_model.variables()) def forward(self, input_dict, state, seq_lens): """ Override forward pass to mask out invalid actions Arguments: input_dict (dict): dictionary of input tensors, including "obs", "obs_flat", "prev_action", "prev_reward", "is_training" state (list): list of state tensors with sizes matching those returned by get_initial_state + the batch dimension seq_lens (Tensor): 1d tensor holding input sequence lengths Returns: (outputs, state): The model output tensor of size [BATCH, num_outputs] """ obs = input_dict['obs'] # extract action mask [batch size, num players] action_mask = obs['action_mask'] # extract original observations [batch size, obs size] array_obs = obs['array_obs'] # Compute the predicted action embedding # size [batch size, num players * num players] action_embed, _ = self.action_embed_model({"obs": array_obs}) # Mask out invalid actions (use tf.float32.min for stability) # size [batch size, num players * num players] inf_mask = tf.maximum(tf.log(action_mask), tf.float32.min) inf_mask = tf.cast(inf_mask, tf.float32) masked_actions = action_embed + inf_mask # return masked action embed and state return masked_actions, state def value_function(self): return self.action_embed_model.value_function()