コード例 #1
0
    def __init__(self,
                 local_evaluator,
                 num_gpus=1,
                 lr=0.0005,
                 train_batch_size=500,
                 num_data_loader_buffers=1,
                 minibatch_buffer_size=1,
                 num_sgd_iter=1,
                 learner_queue_size=16,
                 num_data_load_threads=16,
                 _fake_gpus=False):
        # Multi-GPU requires TensorFlow to function.
        import tensorflow as tf

        LearnerThread.__init__(self, local_evaluator, minibatch_buffer_size,
                               num_sgd_iter, learner_queue_size)
        self.lr = lr
        self.train_batch_size = train_batch_size
        if not num_gpus:
            self.devices = ["/cpu:0"]
        elif _fake_gpus:
            self.devices = ["/cpu:{}".format(i) for i in range(num_gpus)]
        else:
            self.devices = ["/gpu:{}".format(i) for i in range(num_gpus)]
        logger.info("TFMultiGPULearner devices {}".format(self.devices))
        assert self.train_batch_size % len(self.devices) == 0
        assert self.train_batch_size >= len(self.devices), "batch too small"

        if set(self.local_evaluator.policy_map.keys()) != {DEFAULT_POLICY_ID}:
            raise NotImplementedError("Multi-gpu mode for multi-agent")
        self.policy = self.local_evaluator.policy_map[DEFAULT_POLICY_ID]

        # per-GPU graph copies created below must share vars with the policy
        # reuse is set to AUTO_REUSE because Adam nodes are created after
        # all of the device copies are created.
        self.par_opt = []
        with self.local_evaluator.tf_sess.graph.as_default():
            with self.local_evaluator.tf_sess.as_default():
                with tf.variable_scope(DEFAULT_POLICY_ID, reuse=tf.AUTO_REUSE):
                    if self.policy._state_inputs:
                        rnn_inputs = self.policy._state_inputs + [
                            self.policy._seq_lens
                        ]
                    else:
                        rnn_inputs = []
                    adam = tf.train.AdamOptimizer(self.lr)
                    for _ in range(num_data_loader_buffers):
                        self.par_opt.append(
                            LocalSyncParallelOptimizer(
                                adam,
                                self.devices,
                                [v for _, v in self.policy._loss_inputs],
                                rnn_inputs,
                                999999,  # it will get rounded down
                                self.policy.copy))

                self.sess = self.local_evaluator.tf_sess
                self.sess.run(tf.global_variables_initializer())

        self.idle_optimizers = queue.Queue()
        self.ready_optimizers = queue.Queue()
        for opt in self.par_opt:
            self.idle_optimizers.put(opt)
        for i in range(num_data_load_threads):
            self.loader_thread = _LoaderThread(self, share_stats=(i == 0))
            self.loader_thread.start()

        self.minibatch_buffer = MinibatchBuffer(
            self.ready_optimizers, minibatch_buffer_size, num_sgd_iter)
コード例 #2
0
    def __init__(self,
                 local_worker,
                 num_gpus=1,
                 lr=0.0005,
                 train_batch_size=500,
                 num_data_loader_buffers=1,
                 minibatch_buffer_size=1,
                 num_sgd_iter=1,
                 learner_queue_size=16,
                 learner_queue_timeout=300,
                 num_data_load_threads=16,
                 _fake_gpus=False):
        """Initialize a multi-gpu learner thread.

        Arguments:
            local_worker (RolloutWorker): process local rollout worker holding
                policies this thread will call learn_on_batch() on
            num_gpus (int): number of GPUs to use for data-parallel SGD
            lr (float): learning rate
            train_batch_size (int): size of batches to learn on
            num_data_loader_buffers (int): number of buffers to load data into
                in parallel. Each buffer is of size of train_batch_size and
                increases GPU memory usage proportionally.
            minibatch_buffer_size (int): max number of train batches to store
                in the minibatching buffer
            num_sgd_iter (int): number of passes to learn on per train batch
            learner_queue_size (int): max size of queue of inbound
                train batches to this thread
            num_data_loader_threads (int): number of threads to use to load
                data into GPU memory in parallel
        """
        LearnerThread.__init__(self, local_worker, minibatch_buffer_size,
                               num_sgd_iter, learner_queue_size,
                               learner_queue_timeout)
        self.lr = lr
        self.train_batch_size = train_batch_size
        if not num_gpus:
            self.devices = ["/cpu:0"]
        elif _fake_gpus:
            self.devices = [
                "/cpu:{}".format(i) for i in range(int(math.ceil(num_gpus)))
            ]
        else:
            self.devices = [
                "/gpu:{}".format(i) for i in range(int(math.ceil(num_gpus)))
            ]
        logger.info("TFMultiGPULearner devices {}".format(self.devices))
        assert self.train_batch_size % len(self.devices) == 0
        assert self.train_batch_size >= len(self.devices), "batch too small"

        if set(self.local_worker.policy_map.keys()) != {DEFAULT_POLICY_ID}:
            raise NotImplementedError("Multi-gpu mode for multi-agent")
        self.policy = self.local_worker.policy_map[DEFAULT_POLICY_ID]

        # per-GPU graph copies created below must share vars with the policy
        # reuse is set to AUTO_REUSE because Adam nodes are created after
        # all of the device copies are created.
        self.par_opt = []
        with self.local_worker.tf_sess.graph.as_default():
            with self.local_worker.tf_sess.as_default():
                with tf.variable_scope(DEFAULT_POLICY_ID, reuse=tf.AUTO_REUSE):
                    if self.policy._state_inputs:
                        rnn_inputs = self.policy._state_inputs + [
                            self.policy._seq_lens
                        ]
                    else:
                        rnn_inputs = []
                    adam = tf.train.AdamOptimizer(self.lr)
                    for _ in range(num_data_loader_buffers):
                        self.par_opt.append(
                            LocalSyncParallelOptimizer(
                                adam,
                                self.devices,
                                [v for _, v in self.policy._loss_inputs],
                                rnn_inputs,
                                999999,  # it will get rounded down
                                self.policy.copy))

                self.sess = self.local_worker.tf_sess
                self.sess.run(tf.global_variables_initializer())

        self.idle_optimizers = queue.Queue()
        self.ready_optimizers = queue.Queue()
        for opt in self.par_opt:
            self.idle_optimizers.put(opt)
        for i in range(num_data_load_threads):
            self.loader_thread = _LoaderThread(self, share_stats=(i == 0))
            self.loader_thread.start()

        self.minibatch_buffer = MinibatchBuffer(self.ready_optimizers,
                                                minibatch_buffer_size,
                                                learner_queue_timeout,
                                                num_sgd_iter)