def compute_steps( self, gamma, lam, horizon, min_steps_per_task, observation_filter, reward_filter): """Compute multiple rollouts and concatenate the results. Args: gamma: MDP discount factor lam: GAE(lambda) parameter horizon: Number of steps after which a rollout gets cut min_steps_per_task: Lower bound on the number of states to be collected. observation_filter: Function that is applied to each of the observations. reward_filter: Function that is applied to each of the rewards. Returns: states: List of states. total_rewards: Total rewards of the trajectories. trajectory_lengths: Lengths of the trajectories. """ # Update our local filters self.observation_filter = observation_filter.copy() self.reward_filter = reward_filter.copy() num_steps_so_far = 0 trajectories = [] total_rewards = [] trajectory_lengths = [] while True: trajectory = self.compute_trajectory(gamma, lam, horizon) total_rewards.append( trajectory["raw_rewards"].sum(axis=0).mean()) trajectory_lengths.append( np.logical_not(trajectory["dones"]).sum(axis=0).mean()) trajectory = flatten(trajectory) not_done = np.logical_not(trajectory["dones"]) # Filtering out states that are done. We do this because # trajectories are batched and cut only if all the trajectories # in the batch terminated, so we can potentially get rid of # some of the states here. trajectory = {key: val[not_done] for key, val in trajectory.items()} num_steps_so_far += trajectory["raw_rewards"].shape[0] trajectories.append(trajectory) if num_steps_so_far >= min_steps_per_task: break return ( concatenate(trajectories), total_rewards, trajectory_lengths, self.observation_filter, self.reward_filter)
def testFlatten(self): d = { "s": np.array([[[1, -1], [2, -2]], [[3, -3], [4, -4]]]), "a": np.array([[[5], [-5]], [[6], [-6]]]) } flat = flatten(d.copy(), start=0, stop=2) assert_allclose(d["s"][0][0][:], flat["s"][0][:]) assert_allclose(d["s"][0][1][:], flat["s"][1][:]) assert_allclose(d["s"][1][0][:], flat["s"][2][:]) assert_allclose(d["s"][1][1][:], flat["s"][3][:]) assert_allclose(d["a"][0][0], flat["a"][0]) assert_allclose(d["a"][0][1], flat["a"][1]) assert_allclose(d["a"][1][0], flat["a"][2]) assert_allclose(d["a"][1][1], flat["a"][3])