コード例 #1
0
ファイル: deployment_node.py プロジェクト: miqdigital/ray
    def _get_serve_deployment_handle(
        self,
        deployment: Deployment,
        bound_other_args_to_resolve: Dict[str, Any],
    ) -> Union[RayServeHandle, RayServeSyncHandle]:
        """
        Return a sync or async handle of the encapsulated Deployment based on
        config.

        Args:
            deployment (Deployment): Deployment instance wrapped in the DAGNode.
            bound_other_args_to_resolve (Dict[str, Any]): Contains args used
                to configure DeploymentNode.

        Returns:
            RayServeHandle: Default and catch-all is to return sync handle.
                return async handle only if user explicitly set
                USE_SYNC_HANDLE_KEY with value of False.
        """
        # TODO (jiaodong): Support configurable async handle
        if USE_SYNC_HANDLE_KEY not in bound_other_args_to_resolve:
            # Return sync RayServeLazySyncHandle
            return RayServeLazySyncHandle(deployment.name)
        elif bound_other_args_to_resolve.get(USE_SYNC_HANDLE_KEY) is True:
            # Return sync RayServeSyncHandle
            return deployment.get_handle(sync=True)
        elif bound_other_args_to_resolve.get(USE_SYNC_HANDLE_KEY) is False:
            # Return async RayServeHandle
            return deployment.get_handle(sync=False)
        else:
            raise ValueError(
                f"{USE_SYNC_HANDLE_KEY} should only be set with a boolean value."
            )
コード例 #2
0
ファイル: scripts.py プロジェクト: afzalmushtaque/ray
def _configure_runtime_env(deployment: Deployment, updates: Dict):
    """Overwrites deployment's runtime_env with fields in updates.

    Any fields in deployment's runtime_env that aren't in updates stay the
    same.
    """

    if deployment.ray_actor_options is None:
        deployment._ray_actor_options = {"runtime_env": updates}
    else:
        current_env = deployment.ray_actor_options.get("runtime_env", {})
        updates.update(current_env)
        deployment.ray_actor_options["runtime_env"] = updates
コード例 #3
0
def test_invalid_use_sync_handle():
    deployment = Deployment(
        Actor,
        "test",
        DeploymentConfig(),
        _internal=True,
    )
    with pytest.raises(
        ValueError,
        match=f"{USE_SYNC_HANDLE_KEY} should only be set with a boolean value",
    ):
        _ = DeploymentNode(
            Actor,
            "test",
            [],
            {},
            {},
            other_args_to_resolve={USE_SYNC_HANDLE_KEY: {"options_a": "hii"}},
        )
    with pytest.raises(
        ValueError,
        match=f"{USE_SYNC_HANDLE_KEY} should only be set with a boolean value",
    ):
        _ = DeploymentMethodNode(
            deployment,
            "method",
            [],
            {},
            {},
            other_args_to_resolve={
                USE_SYNC_HANDLE_KEY: None,
            },
        )
コード例 #4
0
ファイル: deployment_node.py プロジェクト: afzalmushtaque/ray
    def __init__(
        self,
        # For serve structured deployment, deployment body can be import path
        # to the class or function instead.
        func_or_class: Union[Callable, str],
        deployment_name: str,
        deployment_init_args: Tuple[Any],
        deployment_init_kwargs: Dict[str, Any],
        ray_actor_options: Dict[str, Any],
        other_args_to_resolve: Optional[Dict[str, Any]] = None,
    ):
        # Assign instance variables in base class constructor.
        super().__init__(
            deployment_init_args,
            deployment_init_kwargs,
            ray_actor_options,
            other_args_to_resolve=other_args_to_resolve,
        )
        if self._contains_input_node():
            raise ValueError(
                "InputNode handles user dynamic input the the DAG, and "
                "cannot be used as args, kwargs, or other_args_to_resolve "
                "in the DeploymentNode constructor because it is not available "
                "at class construction or binding time.")
        # Deployment can be passed into other DAGNodes as init args. This is
        # supported pattern in ray DAG that user can instantiate and pass class
        # instances as init args to others.

        # However in ray serve we send init args via .remote() that requires
        # pickling, and all DAGNode types are not picklable by design.

        # Thus we need convert all DeploymentNode used in init args into
        # deployment handles (executable and picklable) in ray serve DAG to make
        # serve DAG end to end executable.
        (
            replaced_deployment_init_args,
            replaced_deployment_init_kwargs,
        ) = self.apply_functional(
            [deployment_init_args, deployment_init_kwargs],
            predictate_fn=lambda node: isinstance(node, (
                DeploymentNode, DeploymentMethodNode)),
            apply_fn=lambda node: node._get_serve_deployment_handle(
                node._deployment, node._bound_other_args_to_resolve),
        )
        self._deployment: Deployment = Deployment(
            func_or_class,
            deployment_name,
            # TODO: (jiaodong) Support deployment config from user input
            DeploymentConfig(),
            init_args=replaced_deployment_init_args,
            init_kwargs=replaced_deployment_init_kwargs,
            ray_actor_options=ray_actor_options,
            _internal=True,
        )
        self._deployment_handle: Union[
            RayServeHandle,
            RayServeSyncHandle] = self._get_serve_deployment_handle(
                self._deployment, other_args_to_resolve)
コード例 #5
0
    def __init__(
        self,
        func_body: Union[Callable, str],
        deployment_name,
        func_args,
        func_kwargs,
        func_options,
        other_args_to_resolve=None,
    ):
        self._body = func_body
        self._deployment_name = deployment_name
        super().__init__(
            func_args,
            func_kwargs,
            func_options,
            other_args_to_resolve=other_args_to_resolve,
        )

        if "deployment_schema" in self._bound_other_args_to_resolve:
            deployment_schema: DeploymentSchema = self._bound_other_args_to_resolve[
                "deployment_schema"]
            deployment_shell = schema_to_deployment(deployment_schema)

            # Prefer user specified name to override the generated one.
            if (inspect.isfunction(func_body)
                    and deployment_shell.name != func_body.__name__):
                self._deployment_name = deployment_shell.name

            # Set the route prefix, prefer the one user supplied,
            # otherwise set it to /deployment_name
            if (deployment_shell.route_prefix is None
                    or deployment_shell.route_prefix !=
                    f"/{deployment_shell.name}"):
                route_prefix = deployment_shell.route_prefix
            else:
                route_prefix = f"/{deployment_name}"

            self._deployment = deployment_shell.options(
                func_or_class=func_body,
                name=self._deployment_name,
                init_args=(),
                init_kwargs=dict(),
                route_prefix=route_prefix,
            )
        else:
            self._deployment: Deployment = Deployment(
                func_body,
                deployment_name,
                DeploymentConfig(),
                init_args=tuple(),
                init_kwargs=dict(),
                ray_actor_options=func_options,
                _internal=True,
            )
        # TODO (jiaodong): Polish with async handle support later
        self._deployment_handle = RayServeLazySyncHandle(deployment_name)
コード例 #6
0
 def from_json(cls, input_json, object_hook=None):
     assert input_json[DAGNODE_TYPE_KEY] == DeploymentMethodNode.__name__
     args_dict = super().from_json_base(input_json, object_hook=object_hook)
     return cls(
         Deployment(
             input_json["import_path"],
             input_json["deployment_name"],
             # TODO: (jiaodong) Support deployment config from user input
             DeploymentConfig(),
             init_args=args_dict["args"],
             init_kwargs=args_dict["kwargs"],
             ray_actor_options=args_dict["options"],
             _internal=True,
         ),
         input_json["deployment_method_name"],
         args_dict["args"],
         args_dict["kwargs"],
         args_dict["options"],
         other_args_to_resolve=args_dict["other_args_to_resolve"],
     )
コード例 #7
0
ファイル: deployment_node.py プロジェクト: miqdigital/ray
    def __init__(
        self,
        # For serve structured deployment, deployment body can be import path
        # to the class or function instead.
        func_or_class: Union[Callable, str],
        deployment_name: str,
        deployment_init_args: Tuple[Any],
        deployment_init_kwargs: Dict[str, Any],
        ray_actor_options: Dict[str, Any],
        other_args_to_resolve: Optional[Dict[str, Any]] = None,
    ):
        # Assign instance variables in base class constructor.
        super().__init__(
            deployment_init_args,
            deployment_init_kwargs,
            ray_actor_options,
            other_args_to_resolve=other_args_to_resolve,
        )
        if self._contains_input_node():
            raise ValueError(
                "InputNode handles user dynamic input the the DAG, and "
                "cannot be used as args, kwargs, or other_args_to_resolve "
                "in the DeploymentNode constructor because it is not available "
                "at class construction or binding time.")
        # Deployment can be passed into other DAGNodes as init args. This is
        # supported pattern in ray DAG that user can instantiate and pass class
        # instances as init args to others.

        # However in ray serve we send init args via .remote() that requires
        # pickling, and all DAGNode types are not picklable by design.

        # Thus we need convert all DeploymentNode used in init args into
        # deployment handles (executable and picklable) in ray serve DAG to make
        # serve DAG end to end executable.
        def replace_with_handle(node):
            if isinstance(node, DeploymentNode):
                return node._get_serve_deployment_handle(
                    node._deployment, node._bound_other_args_to_resolve)
            elif isinstance(node,
                            (DeploymentMethodNode, DeploymentFunctionNode)):
                from ray.serve.pipeline.json_serde import DAGNodeEncoder

                serve_dag_root_json = json.dumps(node, cls=DAGNodeEncoder)
                return RayServeDAGHandle(serve_dag_root_json)

        (
            replaced_deployment_init_args,
            replaced_deployment_init_kwargs,
        ) = self.apply_functional(
            [deployment_init_args, deployment_init_kwargs],
            predictate_fn=lambda node: isinstance(node, (
                DeploymentNode, DeploymentMethodNode, DeploymentFunctionNode)),
            apply_fn=replace_with_handle,
        )

        if "deployment_schema" in self._bound_other_args_to_resolve:
            deployment_schema: DeploymentSchema = self._bound_other_args_to_resolve[
                "deployment_schema"]
            deployment_shell = schema_to_deployment(deployment_schema)

            # Prefer user specified name to override the generated one.
            if (inspect.isclass(func_or_class)
                    and deployment_shell.name != func_or_class.__name__):
                deployment_name = deployment_shell.name

            # Set the route prefix, prefer the one user supplied,
            # otherwise set it to /deployment_name
            if (deployment_shell.route_prefix is None
                    or deployment_shell.route_prefix !=
                    f"/{deployment_shell.name}"):
                route_prefix = deployment_shell.route_prefix
            else:
                route_prefix = f"/{deployment_name}"

            self._deployment = deployment_shell.options(
                func_or_class=func_or_class,
                name=deployment_name,
                init_args=replaced_deployment_init_args,
                init_kwargs=replaced_deployment_init_kwargs,
                route_prefix=route_prefix,
            )
        else:
            self._deployment: Deployment = Deployment(
                func_or_class,
                deployment_name,
                # TODO: (jiaodong) Support deployment config from user input
                DeploymentConfig(),
                init_args=replaced_deployment_init_args,
                init_kwargs=replaced_deployment_init_kwargs,
                ray_actor_options=ray_actor_options,
                _internal=True,
            )
        self._deployment_handle: Union[
            RayServeLazySyncHandle, RayServeHandle,
            RayServeSyncHandle] = self._get_serve_deployment_handle(
                self._deployment, other_args_to_resolve)