def load_rbns_from_erb(directory, remember): rbn_distribution, name = glob_load(directory + '*distribution')[0] scatterplot = ["x y"] for accuracy, rbn in rbn_distribution: cc = measure_computational_capability(rbn, 100, remember) scatterplot.append("{} {}".format(cc, accuracy)) distribution = {} distplot = ["\\myboxplot{"] for accuracy, rbn in rbn_distribution: ic = rbn.input_connectivity if ic not in distribution: distribution[ic] = [] distribution[ic].append(accuracy) for i, l in enumerate(sorted(distribution.keys())): distplot.append("% L: {}".format(i)) distplot.append("\\addplot[boxplot]") distplot.append("table[row sep=\\\\, y index=0] {") distplot.append("data") for fitness in distribution[l]: distplot.append("{} \\\\".format(fitness)) distplot.append("};") distplot.append("}}{{{}}}".format(10.0 / max(distribution.keys()))) return '\n'.join(scatterplot), '\n'.join(distplot)
#}}, #] coordinates {{}};""".format(l, i, median, upperq, lowerq, upperw, lowerw) # # print boxplot # # print "}}{{{}}}".format(10.0 / max(distribution.keys())) if __name__ == '__main__': #filename = "pickle_dumps/distribution-100-5-3/combined-distribution" #computational_power_scatter() #distribution_to_plot() #erb() rbn, _ = glob_load('pickle_dumps/70input-2/*-reservoir')[0] ccs = [measure_computational_capability(rbn, 100, 3) for _ in range(20)] print ccs, np.median(ccs), np.mean(ccs) #postfix = default_input('Postfix?', '-3-1') #remember = int(postfix.split("-")[1]) - 1 #scatter, box = load_rbns_from_erb('pickle_dumps/c-distribution-100' + postfix + '/', remember) #print scatter #sc = open('pickle_dumps/c-distribution-100' + postfix + # '/computational-power-100' + postfix + '.dat', 'w') #sc.write(scatter) #sc.close() #bx = open('pickle_dumps/c-distribution-100' + postfix +
# lower whisker={} #}}, #] coordinates {{}};""".format(l, i, median, upperq, lowerq, upperw, lowerw) # # print boxplot # # print "}}{{{}}}".format(10.0 / max(distribution.keys())) if __name__ == '__main__': #filename = "pickle_dumps/distribution-100-5-3/combined-distribution" #computational_power_scatter() #distribution_to_plot() #erb() rbn, _ = glob_load('pickle_dumps/70input-2/*-reservoir')[0] ccs = [measure_computational_capability(rbn, 100, 3) for _ in range(20)] print ccs, np.median(ccs), np.mean(ccs) #postfix = default_input('Postfix?', '-3-1') #remember = int(postfix.split("-")[1]) - 1 #scatter, box = load_rbns_from_erb('pickle_dumps/c-distribution-100' + postfix + '/', remember) #print scatter #sc = open('pickle_dumps/c-distribution-100' + postfix + # '/computational-power-100' + postfix + '.dat', 'w') #sc.write(scatter) #sc.close() #bx = open('pickle_dumps/c-distribution-100' + postfix +