コード例 #1
0
        def __init__(self, truth_problem, **kwargs):
            # Call to parent
            ParametrizedReducedDifferentialProblem_DerivedClass.__init__(
                self, truth_problem, **kwargs)

            # $$ ONLINE DATA STRUCTURES $$ #
            # Residual terms
            self.RieszExpansionStorage = OnlineAffineExpansionStorage
            self.riesz = dict()  # from string to RieszExpansionStorage
            self.riesz_terms = list()
            self.ErrorEstimationOperatorExpansionStorage = OnlineAffineExpansionStorage
            self.error_estimation_operator = dict(
            )  # from string to ErrorEstimationOperatorExpansionStorage
            self.error_estimation_terms = list()  # of tuple

            # $$ OFFLINE DATA STRUCTURES $$ #
            # Residual terms
            self._riesz_solve_storage = Function(self.truth_problem.V)
            self._riesz_solve_inner_product = None  # setup by init()
            self._riesz_solve_homogeneous_dirichlet_bc = None  # setup by init()
            self._error_estimation_inner_product = None  # setup by init()
            # I/O
            self.folder["error_estimation"] = os.path.join(
                self.folder_prefix, "error_estimation")

            # Provide a default value for Riesz terms and Riesz product terms
            self.riesz_terms = [term for term in self.terms]
            self.error_estimation_terms = [
                (term1, term2) for term1 in self.terms for term2 in self.terms
                if self.terms_order[term1] >= self.terms_order[term2]
            ]
コード例 #2
0
    def __init__(self, V, **kwargs):

        # Call to parent
        ParametrizedProblem.__init__(self, self.name())

        # Input arguments
        self.V = V
        # Form names and order (to be filled in by child classes)
        self.terms = list()
        self.terms_order = dict()
        self.components = list()
        # Number of terms in the affine expansion
        self.Q = dict()  # from string to integer
        # Matrices/vectors resulting from the truth discretization
        self.OperatorExpansionStorage = AffineExpansionStorage
        self.operator = dict()  # from string to OperatorExpansionStorage
        self.inner_product = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components), even though it will contain only one matrix
        self._combined_inner_product = None
        self.projection_inner_product = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components), even though it will contain only one matrix
        self._combined_projection_inner_product = None
        self.dirichlet_bc = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components)
        self.dirichlet_bc_are_homogeneous = None  # bool (for problems with one component) or dict of bools (for problem with several components)
        self._combined_and_homogenized_dirichlet_bc = None
        # Solution
        self._solution = Function(self.V)
        self._solution_cache = dict()  # of Functions
        self._output = 0
        self._output_cache = dict()  # of Numbers
        self._output_cache__current_cache_key = None
        # I/O
        self.folder["cache"] = os.path.join(self.folder_prefix, "cache")
        self.cache_config = config.get("problems", "cache")
コード例 #3
0
 def import_solution(self,
                     folder=None,
                     filename=None,
                     solution_over_time=None,
                     component=None,
                     suffix=None):
     if folder is None:
         folder = self.folder_prefix
     if filename is None:
         filename = "solution"
     if solution_over_time is None:
         solution_over_time = self._solution_over_time
     if isinstance(solution_over_time, AbstractTimeSeries):
         solution = Function(self.V)
         assert suffix is None
         solution_over_time.clear()
         for (k, _) in enumerate(
                 self._solution_over_time.expected_times()):
             ParametrizedDifferentialProblem_DerivedClass.import_solution(
                 self, folder, filename, solution, component, suffix=k)
             solution_over_time.append(copy(solution))
     else:
         # Used only for cache import
         solution = solution_over_time
         assert suffix is not None
         ParametrizedDifferentialProblem_DerivedClass.import_solution(
             self,
             folder,
             filename,
             solution,
             component=component,
             suffix=suffix)
コード例 #4
0
 def solve(self, **kwargs):
     """
     Perform a truth solve in case no precomputed solution is imported.
     """
     (cache_key,
      cache_file) = self._cache_key_and_file_from_kwargs(**kwargs)
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading truth solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
     elif "Disk" in self.cache_config and self.import_solution(
             self.folder["cache"], cache_file):
         log(PROGRESS, "Loading truth solution from file")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
     else:  # No precomputed solution available. Truth solve is performed.
         log(PROGRESS, "Solving truth problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
         self.export_solution(
             self.folder["cache"], cache_file
         )  # Note that we export to file regardless of config options, because they may change across different runs
     return self._solution
 def __init__(self, truth_problem, term, multiply_by_theta, spectrum, eigensolver_parameters, folder_prefix):
     # Call the parent initialization
     ParametrizedProblem.__init__(self, folder_prefix) # this class does not export anything
     self.truth_problem = truth_problem
     
     # Matrices/vectors resulting from the truth discretization
     self.term = term
     assert isinstance(self.term, (tuple, str))
     if isinstance(self.term, tuple):
         assert len(self.term) == 2
         isinstance(self.term[0], str)
         isinstance(self.term[1], int)
     self.multiply_by_theta = multiply_by_theta
     assert isinstance(self.multiply_by_theta, bool)
     self.operator = None # AffineExpansionStorage
     self.inner_product = None # AffineExpansionStorage, even though it will contain only one matrix
     self.spectrum = spectrum
     self.eigensolver_parameters = eigensolver_parameters
     
     # Avoid useless computations
     self._eigenvalue = 0.
     self._eigenvalue_cache = dict()
     self._eigenvector = Function(truth_problem.V)
     self._eigenvector_cache = dict()
     self.folder["cache"] = os.path.join(folder_prefix, "cache")
     self.cache_config = config.get("problems", "cache")
コード例 #6
0
 def solve(self, **kwargs):
     (cache_key, cache_file) = self._cache_key_and_file_from_kwargs(**kwargs)
     assert (
         (cache_key in self._solution_cache)
             ==
         (cache_key in self._solution_dot_cache)
             ==
         (cache_key in self._solution_over_time_cache)
             ==
         (cache_key in self._solution_dot_over_time_cache)
     )
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading truth solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
         assign(self._solution_dot, self._solution_dot_cache[cache_key])
         assign(self._solution_over_time, self._solution_over_time_cache[cache_key])
         assign(self._solution_dot_over_time, self._solution_dot_over_time_cache[cache_key])
     elif "Disk" in self.cache_config and (
         self.import_solution(self.folder["cache"], cache_file + "_solution", self._solution_over_time)
             and
         self.import_solution(self.folder["cache"], cache_file + "_solution_dot", self._solution_dot_over_time)
     ):
         log(PROGRESS, "Loading truth solution from file")
         assign(self._solution, self._solution_over_time[-1])
         assign(self._solution_dot, self._solution_dot_over_time[-1])
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
             self._solution_dot_cache[cache_key] = copy(self._solution_dot)
             self._solution_over_time_cache[cache_key] = copy(self._solution_over_time)
             self._solution_dot_over_time_cache[cache_key] = copy(self._solution_dot_over_time)
     else:
         log(PROGRESS, "Solving truth problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         assign(self._solution_dot, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
             self._solution_dot_cache[cache_key] = copy(self._solution_dot)
             self._solution_over_time_cache[cache_key] = copy(self._solution_over_time)
             self._solution_dot_over_time_cache[cache_key] = copy(self._solution_dot_over_time)
         # Note that we export to file regardless of config options, because they may change across different runs
         self.export_solution(self.folder["cache"], cache_file + "_solution", self._solution_over_time)
         self.export_solution(self.folder["cache"], cache_file + "_solution_dot", self._solution_dot_over_time)
     return self._solution_over_time
コード例 #7
0
 def __init__(self, truth_problem, term, multiply_by_theta, spectrum, eigensolver_parameters, folder_prefix):
     # Call the parent initialization
     ParametrizedProblem.__init__(self, folder_prefix) # this class does not export anything
     self.truth_problem = truth_problem
     
     # Matrices/vectors resulting from the truth discretization
     self.term = term
     assert isinstance(self.term, (tuple, str))
     if isinstance(self.term, tuple):
         assert len(self.term) == 2
         isinstance(self.term[0], str)
         isinstance(self.term[1], int)
     self.multiply_by_theta = multiply_by_theta
     assert isinstance(self.multiply_by_theta, bool)
     self.operator = None # AffineExpansionStorage
     self.inner_product = None # AffineExpansionStorage, even though it will contain only one matrix
     self.spectrum = spectrum
     self.eigensolver_parameters = eigensolver_parameters
     
     # Avoid useless computations
     self._eigenvalue = 0.
     self._eigenvector = Function(truth_problem.V)
     # I/O
     self.folder["cache"] = os.path.join(folder_prefix, "cache")
     def _eigenvalue_cache_key_generator(*args, **kwargs):
         return args
     def _eigenvalue_cache_import(filename):
         self.import_eigenvalue(self.folder["cache"], filename)
         return self._eigenvalue
     def _eigenvalue_cache_export(filename):
         self.export_eigenvalue(self.folder["cache"], filename)
     def _eigenvalue_cache_filename_generator(*args, **kwargs):
         return self._cache_file(args)
     self._eigenvalue_cache = Cache(
         "problems",
         key_generator=_eigenvalue_cache_key_generator,
         import_=_eigenvalue_cache_import,
         export=_eigenvalue_cache_export,
         filename_generator=_eigenvalue_cache_filename_generator
     )
     def _eigenvector_cache_key_generator(*args, **kwargs):
         return args
     def _eigenvector_cache_import(filename):
         self.import_eigenvector(self.folder["cache"], filename)
         return self._eigenvector
     def _eigenvector_cache_export(filename):
         self.export_eigenvector(self.folder["cache"], filename)
     def _eigenvector_cache_filename_generator(*args, **kwargs):
         return self._cache_file(args)
     self._eigenvector_cache = Cache(
         "problems",
         key_generator=_eigenvector_cache_key_generator,
         import_=_eigenvector_cache_import,
         export=_eigenvector_cache_export,
         filename_generator=_eigenvector_cache_filename_generator
     )
コード例 #8
0
ファイル: stokes_problem.py プロジェクト: ljnpu/RBniCS
    def __init__(self, V, **kwargs):
        # Call to parent
        StokesProblem_Base.__init__(self, V, **kwargs)

        # Form names for saddle point problems
        self.terms = [
            "a",
            "b",
            "bt",
            "f",
            "g",
            # Auxiliary terms for supremizer enrichment
            "bt_restricted"
        ]
        self.terms_order = {
            "a": 2,
            "b": 2,
            "bt": 2,
            "f": 1,
            "g": 1,
            # Auxiliary terms for supremizer enrichment
            "bt_restricted": 2
        }
        self.components = ["u", "s", "p"]

        # Auxiliary storage for supremizer enrichment, using a subspace of V
        self._supremizer = Function(V, "s")

        # I/O
        def _supremizer_cache_key_generator(*args, **kwargs):
            assert len(args) is 1
            assert args[0] == self.mu
            return self._supremizer_cache_key_from_kwargs(**kwargs)

        def _supremizer_cache_import(filename):
            supremizer = copy(self._supremizer)
            self.import_supremizer(self.folder["cache"], filename, supremizer)
            return supremizer

        def _supremizer_cache_export(filename):
            self.export_supremizer(self.folder["cache"], filename)

        def _supremizer_cache_filename_generator(*args, **kwargs):
            assert len(args) is 1
            assert args[0] == self.mu
            return self._supremizer_cache_file_from_kwargs(**kwargs)

        self._supremizer_cache = Cache(
            "problems",
            key_generator=_supremizer_cache_key_generator,
            import_=_supremizer_cache_import,
            export=_supremizer_cache_export,
            filename_generator=_supremizer_cache_filename_generator)
コード例 #9
0
 def solve(self, **kwargs):
     """
     Perform a truth solve in case no precomputed solution is imported.
     """
     self._latest_solve_kwargs = kwargs
     try:
         assign(self._solution, self._solution_cache[self.mu, kwargs])  # **kwargs is not supported by __getitem__
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         self._solve(**kwargs)  # will also add to cache
         delattr(self, "_is_solving")
     return self._solution
コード例 #10
0
 def solve(self, **kwargs):
     self._latest_solve_kwargs = kwargs
     try:
         assign(self._solution_over_time,
                self._solution_over_time_cache[
                    self.mu,
                    kwargs])  # **kwargs is not supported by __getitem__
         assign(self._solution_dot_over_time,
                self._solution_dot_over_time_cache[self.mu, kwargs])
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         assign(self._solution_dot, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         self._solution_over_time_cache[self.mu, kwargs] = copy(
             self._solution_over_time)
         self._solution_dot_over_time_cache[self.mu, kwargs] = copy(
             self._solution_dot_over_time)
     else:
         assign(self._solution, self._solution_over_time[-1])
         assign(self._solution_dot, self._solution_dot_over_time[-1])
     return self._solution_over_time
コード例 #11
0
 def import_solution(self,
                     folder=None,
                     filename=None,
                     solution_over_time=None,
                     component=None,
                     suffix=None):
     if folder is None:
         folder = self.folder_prefix
     if filename is None:
         filename = "solution"
     solution = Function(self.V)
     if solution_over_time is None:
         solution_over_time = self._solution_over_time
     assert suffix is None
     solution_over_time.clear()
     for (k, _) in enumerate(self._solution_over_time.expected_times()):
         ParametrizedDifferentialProblem_DerivedClass.import_solution(
             self, folder, filename, solution, component, suffix=k)
         solution_over_time.append(copy(solution))
コード例 #12
0
 def import_solution(self, folder=None, filename=None, solution_over_time=None, component=None, suffix=None):
     if folder is None:
         folder = self.folder_prefix
     if filename is None:
         filename = "solution"
     solution = Function(self.V)
     if solution_over_time is None:
         solution_over_time = self._solution_over_time
     assert suffix is None
     k = 0
     self.t = 0
     del solution_over_time[:]
     while self.t <= self.T:
         import_solution = ParametrizedDifferentialProblem_DerivedClass.import_solution(self, folder, filename, solution, component, suffix=k)
         if import_solution:
             solution_over_time.append(copy(solution))
             k += 1
             self.t += self.dt
         else:
             return False
     return True
コード例 #13
0
 def ic_eval(self):
     problem = self.problem
     if len(problem.components) > 1:
         all_initial_conditions = list()
         all_initial_conditions_thetas = list()
         for component in problem.components:
             if problem.initial_condition[component] is not None:
                 all_initial_conditions.extend(
                     problem.initial_condition[component])
                 all_initial_conditions_thetas.extend(
                     problem.compute_theta("initial_condition_" +
                                           component))
         if len(all_initial_conditions) > 0:
             all_initial_conditions = tuple(all_initial_conditions)
             all_initial_conditions = AffineExpansionStorage(
                 all_initial_conditions)
             all_initial_conditions_thetas = tuple(
                 all_initial_conditions_thetas)
         else:
             all_initial_conditions = None
             all_initial_conditions_thetas = None
     else:
         if problem.initial_condition is not None:
             all_initial_conditions = problem.initial_condition
             all_initial_conditions_thetas = problem.compute_theta(
                 "initial_condition")
         else:
             all_initial_conditions = None
             all_initial_conditions_thetas = None
     assert (all_initial_conditions is
             None) == (all_initial_conditions_thetas is None)
     if all_initial_conditions is not None:
         return sum(
             product(all_initial_conditions_thetas,
                     all_initial_conditions))
     else:
         return Function(problem.V)
コード例 #14
0
 def __init__(self, V, **kwargs):
     # Call the parent initialization
     ParametrizedDifferentialProblem_DerivedClass.__init__(self, V, **kwargs)
     # Store quantities related to the time discretization
     self.t = 0.
     self.t0 = 0.
     self.dt = None
     self.T = None
     # Additional options for time stepping may be stored in the following dict
     self._time_stepping_parameters = dict()
     self._time_stepping_parameters["initial_time"] = self.t0
     # Matrices/vectors resulting from the truth discretization
     self.initial_condition = None # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components)
     self.initial_condition_is_homogeneous = None # bool (for problems with one component) or dict of bools (for problem with several components)
     # Time derivative of the solution, at the current time
     self._solution_dot = Function(self.V)
     self._solution_dot_cache = dict() # of Functions
     # Solution and output over time
     self._solution_over_time = list() # of Functions
     self._solution_dot_over_time = list() # of Functions
     self._solution_over_time_cache = dict() # of list of Functions
     self._solution_dot_over_time_cache = dict() # of list of Functions
     self._output_over_time = list() # of numbers
     self._output_over_time_cache = dict() # of list of numbers
コード例 #15
0
        def __init__(self, V, **kwargs):
            # Call the parent initialization
            ParametrizedDifferentialProblem_DerivedClass.__init__(
                self, V, **kwargs)
            # Store quantities related to the time discretization
            self.t = 0.
            self.t0 = 0.
            self.dt = None
            self.T = None
            # Additional options for time stepping may be stored in the following dict
            self._time_stepping_parameters = dict()
            self._time_stepping_parameters["initial_time"] = self.t0
            # Matrices/vectors resulting from the truth discretization
            self.initial_condition = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components)
            self.initial_condition_is_homogeneous = None  # bool (for problems with one component) or dict of bools (for problem with several components)
            # Time derivative of the solution, at the current time
            self._solution_dot = Function(self.V)
            # Solution and output over time
            self._solution_over_time = list()  # of Functions
            self._solution_dot_over_time = list()  # of Functions
            self._output_over_time = list()  # of numbers

            # I/O
            def _solution_cache_key_generator(*args, **kwargs):
                assert len(args) is 1
                assert args[0] == self.mu
                return self._cache_key_from_kwargs(**kwargs)

            def _solution_cache_import(filename):
                self.import_solution(self.folder["cache"], filename)
                return self._solution_over_time

            def _solution_cache_export(filename):
                self.export_solution(self.folder["cache"], filename)

            def _solution_cache_filename_generator(*args, **kwargs):
                assert len(args) is 1
                assert args[0] == self.mu
                return self._cache_file_from_kwargs(**kwargs)

            self._solution_over_time_cache = Cache(
                "problems",
                key_generator=_solution_cache_key_generator,
                import_=_solution_cache_import,
                export=_solution_cache_export,
                filename_generator=_solution_cache_filename_generator)
            self._solution_dot_over_time_cache = Cache(
                "problems",
                key_generator=_solution_cache_key_generator,
                import_=_solution_cache_import,
                export=_solution_cache_export,
                filename_generator=_solution_cache_filename_generator)
            del self._solution_cache

            def _output_cache_key_generator(*args, **kwargs):
                assert len(args) is 1
                assert args[0] == self.mu
                return self._cache_key_from_kwargs(**kwargs)

            def _output_cache_import(filename):
                self.import_output(self.folder["cache"], filename)
                return self._output_over_time

            def _output_cache_export(filename):
                self.export_output(self.folder["cache"], filename)

            def _output_cache_filename_generator(*args, **kwargs):
                assert len(args) is 1
                assert args[0] == self.mu
                return self._cache_file_from_kwargs(**kwargs)

            self._output_over_time_cache = Cache(
                "problems",
                key_generator=_output_cache_key_generator,
                import_=_output_cache_import,
                export=_output_cache_export,
                filename_generator=_output_cache_filename_generator)
            del self._output_cache
コード例 #16
0
    def __init__(self,
                 truth_problem,
                 spectrum,
                 eigensolver_parameters,
                 folder_prefix,
                 expansion_index=None):
        # Call the parent initialization
        ParametrizedProblem.__init__(self, folder_prefix)
        self.truth_problem = truth_problem

        # Matrices/vectors resulting from the truth discretization
        self.expansion_index = expansion_index
        self.operator = {
            "stability_factor_left_hand_matrix":
            None,  # AffineExpansionStorage
            "stability_factor_right_hand_matrix":
            None  # AffineExpansionStorage, even though it will contain only one matrix
        }
        self.dirichlet_bc = None  # AffineExpansionStorage
        self.spectrum = spectrum
        self.eigensolver_parameters = eigensolver_parameters

        # Solution
        self._eigenvalue = 0.
        self._eigenvector = Function(truth_problem.stability_factor_V)
        # I/O
        self.folder["cache"] = os.path.join(folder_prefix, "cache")

        def _eigenvalue_cache_key_generator(*args, **kwargs):
            return args

        def _eigenvalue_cache_import(filename):
            self.import_eigenvalue(self.folder["cache"], filename)
            return self._eigenvalue

        def _eigenvalue_cache_export(filename):
            self.export_eigenvalue(self.folder["cache"], filename)

        def _eigenvalue_cache_filename_generator(*args, **kwargs):
            return self._cache_file(args)

        self._eigenvalue_cache = Cache(
            "problems",
            key_generator=_eigenvalue_cache_key_generator,
            import_=_eigenvalue_cache_import,
            export=_eigenvalue_cache_export,
            filename_generator=_eigenvalue_cache_filename_generator)

        def _eigenvector_cache_key_generator(*args, **kwargs):
            return args

        def _eigenvector_cache_import(filename):
            self.import_eigenvector(self.folder["cache"], filename)
            return self._eigenvector

        def _eigenvector_cache_export(filename):
            self.export_eigenvector(self.folder["cache"], filename)

        def _eigenvector_cache_filename_generator(*args, **kwargs):
            return self._cache_file(args)

        self._eigenvector_cache = Cache(
            "problems",
            key_generator=_eigenvector_cache_key_generator,
            import_=_eigenvector_cache_import,
            export=_eigenvector_cache_export,
            filename_generator=_eigenvector_cache_filename_generator)
コード例 #17
0
    def __init__(self, V, **kwargs):
        # Call to parent
        StokesOptimalControlProblem_Base.__init__(self, V, **kwargs)

        # Form names for saddle point problems
        self.terms = [
            "a",
            "a*",
            "b",
            "b*",
            "bt",
            "bt*",
            "c",
            "c*",
            "m",
            "n",
            "f",
            "g",
            "h",
            "l",
            # Auxiliary terms for supremizer enrichment
            "bt_restricted",
            "bt*_restricted"
        ]
        self.terms_order = {
            "a": 2,
            "a*": 2,
            "b": 2,
            "b*": 2,
            "bt": 2,
            "bt*": 2,
            "c": 2,
            "c*": 2,
            "m": 2,
            "n": 2,
            "f": 1,
            "g": 1,
            "l": 1,
            "h": 0,
            # Auxiliary terms for supremizer enrichment
            "bt_restricted": 2,
            "bt*_restricted": 2
        }
        self.components = ["v", "s", "p", "u", "w", "r", "q"]

        # Auxiliary storage for supremizer enrichment, using a subspace of V
        self._supremizer = {"s": Function(V, "s"), "r": Function(V, "r")}

        # I/O
        def _supremizer_cache_key_generator(*args, **kwargs):
            assert len(args) is 1
            assert args[0] == self.mu
            return self._supremizer_cache_key_from_kwargs(**kwargs)

        def _supremizer_cache_import(component):
            def _supremizer_cache_import_impl(filename):
                supremizer = copy(self._supremizer[component])
                self.import_supremizer(self.folder["cache"],
                                       filename,
                                       supremizer,
                                       component=component)
                return supremizer

            return _supremizer_cache_import_impl

        def _supremizer_cache_export(component):
            def _supremizer_cache_export_impl(filename):
                self.export_supremizer(self.folder["cache"],
                                       filename,
                                       component=component)

            return _supremizer_cache_export_impl

        def _supremizer_cache_filename_generator(*args, **kwargs):
            assert len(args) is 1
            assert args[0] == self.mu
            return self._supremizer_cache_file_from_kwargs(**kwargs)

        self._supremizer_cache = {
            "s":
            Cache("problems",
                  key_generator=_supremizer_cache_key_generator,
                  import_=_supremizer_cache_import("s"),
                  export=_supremizer_cache_export("s"),
                  filename_generator=_supremizer_cache_filename_generator),
            "r":
            Cache("problems",
                  key_generator=_supremizer_cache_key_generator,
                  import_=_supremizer_cache_import("r"),
                  export=_supremizer_cache_export("r"),
                  filename_generator=_supremizer_cache_filename_generator)
        }
コード例 #18
0
    def __init__(self, V, **kwargs):

        # Call to parent
        ParametrizedProblem.__init__(self, self.name())

        # Input arguments
        self.V = V
        # Form names and order (to be filled in by child classes)
        self.terms = list()
        self.terms_order = dict()
        self.components = list()
        # Number of terms in the affine expansion
        self.Q = dict()  # from string to integer
        # Matrices/vectors resulting from the truth discretization
        self.OperatorExpansionStorage = AffineExpansionStorage
        self.operator = dict()  # from string to OperatorExpansionStorage
        self.inner_product = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components), even though it will contain only one matrix
        self._combined_inner_product = None
        self.projection_inner_product = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components), even though it will contain only one matrix
        self._combined_projection_inner_product = None
        self.dirichlet_bc = None  # AffineExpansionStorage (for problems with one component) or dict of AffineExpansionStorage (for problem with several components)
        self.dirichlet_bc_are_homogeneous = None  # bool (for problems with one component) or dict of bools (for problem with several components)
        self._combined_and_homogenized_dirichlet_bc = None
        # Solution
        self._solution = Function(self.V)
        self._output = 0.
        # I/O
        self.folder["cache"] = os.path.join(self.folder_prefix, "cache")

        def _solution_cache_key_generator(*args, **kwargs):
            assert len(args) == 1
            assert args[0] == self.mu
            return self._cache_key_from_kwargs(**kwargs)

        def _solution_cache_import(filename):
            solution = copy(self._solution)
            self.import_solution(self.folder["cache"], filename, solution)
            return solution

        def _solution_cache_export(filename):
            self.export_solution(self.folder["cache"], filename)

        def _solution_cache_filename_generator(*args, **kwargs):
            assert len(args) == 1
            assert args[0] == self.mu
            return self._cache_file_from_kwargs(**kwargs)

        self._solution_cache = Cache(
            "problems",
            key_generator=_solution_cache_key_generator,
            import_=_solution_cache_import,
            export=_solution_cache_export,
            filename_generator=_solution_cache_filename_generator)

        def _output_cache_key_generator(*args, **kwargs):
            assert len(args) == 1
            assert args[0] == self.mu
            return self._cache_key_from_kwargs(**kwargs)

        def _output_cache_import(filename):
            output = [0.]
            self.import_output(self.folder["cache"], filename, output)
            assert len(output) == 1
            return output[0]

        def _output_cache_export(filename):
            self.export_output(self.folder["cache"], filename)

        def _output_cache_filename_generator(*args, **kwargs):
            assert len(args) == 1
            assert args[0] == self.mu
            return self._cache_file_from_kwargs(**kwargs)

        self._output_cache = Cache(
            "problems",
            key_generator=_output_cache_key_generator,
            import_=_output_cache_import,
            export=_output_cache_export,
            filename_generator=_output_cache_filename_generator)