def main(): logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############') init_config() if "resnet" in args.pretrained: sym = resnet_50(num_class=args.num_classes, bn_mom=args.bn_mom, bn_global=True, is_train=True) # consider background else: sym = get_faster_rcnn(num_classes=args.num_classes) # consider background feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup for multi-gpu ctx = [mx.gpu(int(i)) for i in args.gpu_ids.split(',')] config.TRAIN.IMS_PER_BATCH *= len(ctx) max_data_shape, max_label_shape = get_max_shape(feat_sym) # data # voc, roidb = load_gt_roidb_from_list(args.dataset_name, args.lst, args.dataset_root, # args.outdata_path, flip=not args.no_flip) voc, roidb = load_gt_roidb(args.image_set, args.year, args.root_path, args.devkit_path, flip=not args.no_flip) train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, anchor_scales=(4, 8, 16, 32), shuffle=not args.no_shuffle, mode='train', ctx=ctx, need_mean=args.need_mean) # model args_params, auxs_params, _ = load_param(args.pretrained, args.load_epoch, convert=True) if not args.resume: args_params, auxs_params= init_model(args_params, auxs_params, train_data, sym, args.pretrained) data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=args.frequent) epoch_end_callback = do_checkpoint(args.prefix) optimizer_params = {'momentum': args.mom, 'wd': args.wd, 'learning_rate': args.lr, # 'lr_scheduler': WarmupScheduler(args.factor_step, 0.1, warmup_lr=0.1*args.lr, warmup_step=200) \ # if not args.resume else mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), 'lr_scheduler': mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), # seems no need warm up 'clip_gradient': 1.0, 'rescale_grad': 1.0} if "resnet" in args.pretrained: # only consider resnet-50 here fixed_param_prefix = ['conv0', 'stage1', 'stage2', 'bn_data', 'bn0'] else: fixed_param_prefix = ['conv1', 'conv2', 'conv3'] # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=max_data_shape, max_label_shapes=max_label_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=metric(), epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=args.kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args_params, aux_params=auxs_params, begin_epoch=args.load_epoch, num_epoch=args.num_epoch)
def main(): logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############') init_config() if "resnet" in args.pretrained: sym = resnet_50(num_class=args.num_classes, bn_mom=args.bn_mom, bn_global=True, is_train=True) # consider background else: sym = get_faster_rcnn(num_classes=args.num_classes) # consider background feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup for multi-gpu ctx = [mx.gpu(int(i)) for i in args.gpu_ids.split(',')] config.TRAIN.IMS_PER_BATCH *= len(ctx) max_data_shape, max_label_shape = get_max_shape(feat_sym) # data voc, roidb = load_gt_roidb_from_list(args.dataset_name, args.lst, args.dataset_root, args.outdata_path, flip=not args.no_flip) train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, anchor_scales=(4, 8, 16, 32), shuffle=not args.no_shuffle, mode='train', ctx=ctx, need_mean=args.need_mean) # model args_params, auxs_params, _ = load_param(args.pretrained, args.load_epoch, convert=True) if not args.resume: args_params, auxs_params= init_model(args_params, auxs_params, train_data, sym, args.pretrained) data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=args.frequent) epoch_end_callback = do_checkpoint(args.prefix) optimizer_params = {'momentum': args.mom, 'wd': args.wd, 'learning_rate': args.lr, # 'lr_scheduler': WarmupScheduler(args.factor_step, 0.1, warmup_lr=0.1*args.lr, warmup_step=200) \ # if not args.resume else mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), 'lr_scheduler': mx.lr_scheduler.FactorScheduler(args.factor_step, 0.1), # seems no need warm up 'clip_gradient': 1.0, 'rescale_grad': 1.0} if "resnet" in args.pretrained: # only consider resnet-50 here fixed_param_prefix = ['conv0', 'stage1', 'stage2', 'bn_data', 'bn0'] else: fixed_param_prefix = ['conv1', 'conv2', 'conv3'] # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, max_data_shapes=max_data_shape, max_label_shapes=max_label_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=metric(), epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=args.kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args_params, aux_params=auxs_params, begin_epoch=args.load_epoch, num_epoch=args.num_epoch)
def train_rpn(image_set, year, root_path, devkit_path, pretrained, epoch, prefix, ctx, begin_epoch, end_epoch, frequent, kv_store, work_load_list=None, resume=False): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load symbol sym = get_vgg_rpn() feat_sym = get_vgg_rpn().get_internals()['rpn_cls_score_output'] # setup multi-gpu config.TRAIN.BATCH_IMAGES *= len(ctx) config.TRAIN.BATCH_SIZE *= len(ctx) # load training data voc, roidb = load_gt_roidb(image_set, year, root_path, devkit_path, flip=True) train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.BATCH_SIZE, shuffle=True, mode='train', ctx=ctx, work_load_list=work_load_list) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_SIZE, 3, 1000, 1000))] max_data_shape_dict = {k: v for k, v in max_data_shape} _, feat_shape, _ = feat_sym.infer_shape(**max_data_shape_dict) from rcnn.minibatch import assign_anchor import numpy as np label = assign_anchor(feat_shape[0], np.zeros((0, 5)), [[1000, 1000, 1.0]]) max_label_shape = [('label', label['label'].shape), ('bbox_target', label['bbox_target'].shape), ('bbox_inside_weight', label['bbox_inside_weight'].shape), ('bbox_outside_weight', label['bbox_outside_weight'].shape)] print 'providing maximum shape', max_data_shape, max_label_shape # load pretrained args, auxs = load_param(pretrained, epoch, convert=True) # initialize params if not resume: input_shapes = {k: v for k, v in train_data.provide_data + train_data.provide_label} arg_shape, _, _ = sym.infer_shape(**input_shapes) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) args['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight']) args['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_conv_3x3_bias']) args['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight']) args['rpn_cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_cls_score_bias']) args['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight']) args['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_bbox_pred_bias']) # prepare training if config.TRAIN.FINETUNE: fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5'] else: fixed_param_prefix = ['conv1', 'conv2'] data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent) epoch_end_callback = mx.callback.do_checkpoint(prefix) if config.TRAIN.HAS_RPN is True: eval_metric = AccuracyMetric(use_ignore=True, ignore=-1) cls_metric = LogLossMetric(use_ignore=True, ignore=-1) else: eval_metric = AccuracyMetric() cls_metric = LogLossMetric() bbox_metric = SmoothL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) optimizer_params = {'momentum': 0.9, 'wd': 0.0005, 'learning_rate': 0.001, 'lr_scheduler': mx.lr_scheduler.FactorScheduler(60000, 0.1), 'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)} # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, work_load_list=work_load_list, max_data_shapes=max_data_shape, max_label_shapes=max_label_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch)
def end2end_train(image_set, test_image_set, year, root_path, devkit_path, pretrained, epoch, prefix, ctx, begin_epoch, num_epoch, frequent, kv_store, mom, wd, lr, num_classes, monitor, work_load_list=None, resume=False, use_flip=True, factor_step=50000): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) mon = None config.TRAIN.BG_THRESH_HI = 0.5 # TODO(verify) config.TRAIN.BG_THRESH_LO = 0.0 # TODO(verify) config.TRAIN.RPN_MIN_SIZE = 16 logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############') config.TRAIN.HAS_RPN = True config.END2END = 1 config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True sym = get_faster_rcnn(num_classes=num_classes) feat_sym = sym.get_internals()['rpn_cls_score_output'] # setup multi-gpu config.TRAIN.IMS_PER_BATCH *= len(ctx) config.TRAIN.BATCH_SIZE *= len(ctx) # no used here # infer max shape max_data_shape = [('data', (config.TRAIN.IMS_PER_BATCH, 3, 1000, 1000))] max_data_shape_dict = {k: v for k, v in max_data_shape} _, feat_shape, _ = feat_sym.infer_shape(**max_data_shape_dict) from rcnn.minibatch import assign_anchor import numpy as np label = assign_anchor(feat_shape[0], np.zeros((0, 5)), [[1000, 1000, 1.0]]) max_label_shape = [('label', label['label'].shape), ('bbox_target', label['bbox_target'].shape), ('bbox_inside_weight', label['bbox_inside_weight'].shape), ('bbox_outside_weight', label['bbox_outside_weight'].shape), ('gt_boxes', (config.TRAIN.IMS_PER_BATCH, 5*100))] # assume at most 100 object in image print 'providing maximum shape', max_data_shape, max_label_shape # load training data voc, roidb = load_gt_roidb(image_set, year, root_path, devkit_path, flip=use_flip) train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, shuffle=True, mode='train', ctx=ctx, work_load_list=work_load_list) # load pretrained args, auxs, _ = load_param(pretrained, epoch, convert=True) # initialize params if not resume: del args['fc8_weight'] del args['fc8_bias'] input_shapes = {k: (1,)+ v[1::] for k, v in train_data.provide_data + train_data.provide_label} arg_shape, _, _ = sym.infer_shape(**input_shapes) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) args['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight']) args['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_conv_3x3_bias']) args['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight']) args['rpn_cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_cls_score_bias']) args['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['rpn_bbox_pred_weight']) # guarantee not likely explode with bbox_delta args['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_bbox_pred_bias']) args['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight']) args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias']) args['bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['bbox_pred_weight']) args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias']) # prepare training if config.TRAIN.FINETUNE: fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5'] else: fixed_param_prefix = ['conv1', 'conv2'] data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent) epoch_end_callback = do_checkpoint(prefix) rpn_eval_metric = AccuracyMetric(use_ignore=True, ignore=-1, ex_rpn=True) rpn_cls_metric = LogLossMetric(use_ignore=True, ignore=-1, ex_rpn=True) rpn_bbox_metric = SmoothL1LossMetric(ex_rpn=True) eval_metric = AccuracyMetric() cls_metric = LogLossMetric() bbox_metric = SmoothL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) optimizer_params = {'momentum': mom, 'wd': wd, 'learning_rate': lr, 'lr_scheduler': mx.lr_scheduler.FactorScheduler(factor_step, 0.1), 'clip_gradient': 1.0, 'rescale_grad': 1.0 } # 'rescale_grad': (1.0 / config.TRAIN.RPN_BATCH_SIZE)} # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, work_load_list=work_load_list, max_data_shapes=max_data_shape, max_label_shapes=max_label_shape, fixed_param_prefix=fixed_param_prefix) if monitor: def norm_stat(d): return mx.nd.norm(d)/np.sqrt(d.size) mon = mx.mon.Monitor(100, norm_stat) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kv_store, optimizer='sgd', optimizer_params=optimizer_params, monitor=mon, arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=num_epoch)
def train_rcnn(image_set, year, root_path, devkit_path, pretrained, epoch, prefix, ctx, begin_epoch, end_epoch, frequent, kv_store, work_load_list=None, resume=False, proposal='rpn'): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load symbol sym = get_vgg_rcnn() # setup multi-gpu config.TRAIN.BATCH_IMAGES *= len(ctx) config.TRAIN.BATCH_SIZE *= len(ctx) # load training data voc, roidb, means, stds = eval('load_' + proposal + '_roidb')(image_set, year, root_path, devkit_path, flip=True) train_data = ROIIter(roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode='train', ctx=ctx, work_load_list=work_load_list) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, 1000, 1000))] # load pretrained args, auxs, _ = load_param(pretrained, epoch, convert=True) # initialize params if not resume: input_shapes = { k: v for k, v in train_data.provide_data + train_data.provide_label } arg_shape, _, _ = sym.infer_shape(**input_shapes) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) args['cls_score_weight'] = mx.random.normal( 0, 0.01, shape=arg_shape_dict['cls_score_weight']) args['cls_score_bias'] = mx.nd.zeros( shape=arg_shape_dict['cls_score_bias']) args['bbox_pred_weight'] = mx.random.normal( 0, 0.001, shape=arg_shape_dict['bbox_pred_weight']) args['bbox_pred_bias'] = mx.nd.zeros( shape=arg_shape_dict['bbox_pred_bias']) # prepare training if config.TRAIN.FINETUNE: fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5'] else: fixed_param_prefix = ['conv1', 'conv2'] data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent) epoch_end_callback = mx.callback.do_checkpoint(prefix) if config.TRAIN.HAS_RPN is True: eval_metric = AccuracyMetric(use_ignore=True, ignore=-1) cls_metric = LogLossMetric(use_ignore=True, ignore=-1) else: eval_metric = AccuracyMetric() cls_metric = LogLossMetric() bbox_metric = SmoothL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) optimizer_params = { 'momentum': 0.9, 'wd': 0.0005, 'learning_rate': 0.001, 'lr_scheduler': mx.lr_scheduler.FactorScheduler(30000, 0.1), 'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE) } # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, work_load_list=work_load_list, max_data_shapes=max_data_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch) # edit params and save for epoch in range(begin_epoch + 1, end_epoch + 1): arg_params, aux_params = load_checkpoint(prefix, epoch) arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T * mx.nd.array(stds)).T arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \ mx.nd.array(means) save_checkpoint(prefix, epoch, arg_params, aux_params)
def train_rcnn(image_set, year, root_path, devkit_path, pretrained, epoch, prefix, ctx, begin_epoch, end_epoch, frequent, kv_store, work_load_list=None, resume=False, proposal='rpn'): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load symbol sym = get_vgg_rcnn() # setup multi-gpu config.TRAIN.BATCH_IMAGES *= len(ctx) config.TRAIN.BATCH_SIZE *= len(ctx) # load training data voc, roidb, means, stds = eval('load_' + proposal + '_roidb')(image_set, year, root_path, devkit_path, flip=True) train_data = ROIIter(roidb, batch_size=config.TRAIN.BATCH_IMAGES, shuffle=True, mode='train', ctx=ctx, work_load_list=work_load_list) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, 1000, 1000))] # load pretrained args, auxs = load_param(pretrained, epoch, convert=True) # initialize params if not resume: input_shapes = {k: v for k, v in train_data.provide_data + train_data.provide_label} arg_shape, _, _ = sym.infer_shape(**input_shapes) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) args['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight']) args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias']) args['bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['bbox_pred_weight']) args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias']) # prepare training if config.TRAIN.FINETUNE: fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5'] else: fixed_param_prefix = ['conv1', 'conv2'] data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent) epoch_end_callback = mx.callback.do_checkpoint(prefix) if config.TRAIN.HAS_RPN is True: eval_metric = AccuracyMetric(use_ignore=True, ignore=-1) cls_metric = LogLossMetric(use_ignore=True, ignore=-1) else: eval_metric = AccuracyMetric() cls_metric = LogLossMetric() bbox_metric = SmoothL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) optimizer_params = {'momentum': 0.9, 'wd': 0.0005, 'learning_rate': 0.001, 'lr_scheduler': mx.lr_scheduler.FactorScheduler(30000, 0.1), 'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE)} # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, work_load_list=work_load_list, max_data_shapes=max_data_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch) # edit params and save for epoch in range(begin_epoch + 1, end_epoch + 1): arg_params, aux_params = load_checkpoint(prefix, epoch) arg_params['bbox_pred_weight'] = (arg_params['bbox_pred_weight'].T * mx.nd.array(stds)).T arg_params['bbox_pred_bias'] = arg_params['bbox_pred_bias'] * mx.nd.array(stds) + \ mx.nd.array(means) save_checkpoint(prefix, epoch, arg_params, aux_params)
def train_rpn(image_set, year, root_path, devkit_path, pretrained, epoch, prefix, ctx, begin_epoch, end_epoch, frequent, kv_store, work_load_list=None, resume=False): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load symbol sym = get_vgg_rpn() feat_sym = get_vgg_rpn().get_internals()['rpn_cls_score_output'] # setup multi-gpu config.TRAIN.BATCH_IMAGES *= len(ctx) config.TRAIN.BATCH_SIZE *= len(ctx) # load training data voc, roidb = load_gt_roidb(image_set, year, root_path, devkit_path, flip=True) train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.BATCH_SIZE, shuffle=True, mode='train', ctx=ctx, work_load_list=work_load_list) # infer max shape max_data_shape = [('data', (config.TRAIN.BATCH_SIZE, 3, 1000, 1000))] max_data_shape_dict = {k: v for k, v in max_data_shape} _, feat_shape, _ = feat_sym.infer_shape(**max_data_shape_dict) from rcnn.minibatch import assign_anchor import numpy as np label = assign_anchor(feat_shape[0], np.zeros((0, 5)), [[1000, 1000, 1.0]]) max_label_shape = [ ('label', label['label'].shape), ('bbox_target', label['bbox_target'].shape), ('bbox_inside_weight', label['bbox_inside_weight'].shape), ('bbox_outside_weight', label['bbox_outside_weight'].shape) ] print 'providing maximum shape', max_data_shape, max_label_shape # load pretrained args, auxs = load_param(pretrained, epoch, convert=True) # initialize params if not resume: input_shapes = { k: v for k, v in train_data.provide_data + train_data.provide_label } arg_shape, _, _ = sym.infer_shape(**input_shapes) arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape)) args['rpn_conv_3x3_weight'] = mx.random.normal( 0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight']) args['rpn_conv_3x3_bias'] = mx.nd.zeros( shape=arg_shape_dict['rpn_conv_3x3_bias']) args['rpn_cls_score_weight'] = mx.random.normal( 0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight']) args['rpn_cls_score_bias'] = mx.nd.zeros( shape=arg_shape_dict['rpn_cls_score_bias']) args['rpn_bbox_pred_weight'] = mx.random.normal( 0, 0.01, shape=arg_shape_dict['rpn_bbox_pred_weight']) args['rpn_bbox_pred_bias'] = mx.nd.zeros( shape=arg_shape_dict['rpn_bbox_pred_bias']) # prepare training if config.TRAIN.FINETUNE: fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5'] else: fixed_param_prefix = ['conv1', 'conv2'] data_names = [k[0] for k in train_data.provide_data] label_names = [k[0] for k in train_data.provide_label] batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent) epoch_end_callback = mx.callback.do_checkpoint(prefix) if config.TRAIN.HAS_RPN is True: eval_metric = AccuracyMetric(use_ignore=True, ignore=-1) cls_metric = LogLossMetric(use_ignore=True, ignore=-1) else: eval_metric = AccuracyMetric() cls_metric = LogLossMetric() bbox_metric = SmoothL1LossMetric() eval_metrics = mx.metric.CompositeEvalMetric() for child_metric in [eval_metric, cls_metric, bbox_metric]: eval_metrics.add(child_metric) optimizer_params = { 'momentum': 0.9, 'wd': 0.0005, 'learning_rate': 0.001, 'lr_scheduler': mx.lr_scheduler.FactorScheduler(60000, 0.1), 'rescale_grad': (1.0 / config.TRAIN.BATCH_SIZE) } # train mod = MutableModule(sym, data_names=data_names, label_names=label_names, logger=logger, context=ctx, work_load_list=work_load_list, max_data_shapes=max_data_shape, max_label_shapes=max_label_shape, fixed_param_prefix=fixed_param_prefix) mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback, batch_end_callback=batch_end_callback, kvstore=kv_store, optimizer='sgd', optimizer_params=optimizer_params, arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=end_epoch)