コード例 #1
0
def mergeNGAdata(
        nametrain='/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest='/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        filenamenga='/Users/aklimasewski/Documents/data/NGA_mag2_9.csv',
        n=13):
    from sklearn.model_selection import train_test_split

    train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        n=n)
    train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                    feature_names)

    # filenamenga = '/Users/aklimasewski/Documents/data/NGA_mag2_9.csv'
    nga_data1, nga_targets1, feature_names = readindataNGA(filenamenga, n)
    nga_data1, feature_names = add_azNGA(filenamenga, nga_data1, feature_names)

    # ngatrain, ngatest, ngatrain_targets, ngatest_targets = train_test_split(nga_data1,nga_targets1, test_size=0.2, random_state=1)
    ngatrain, ngatest, ngatrain_targets, ngatest_targets, ngacells_train, ngacells_test = train_test_split(
        nga_data1, nga_targets1, cells_nga, test_size=0.2, random_state=1)

    train_data1 = np.concatenate([train_data1, ngatrain], axis=0)
    test_data1 = np.concatenate([test_data1, ngatest], axis=0)

    train_data1 = np.concatenate([train_data1, ngatrain], axis=0)
    test_data1 = np.concatenate([test_data1, ngatest], axis=0)

    train_targets1 = np.concatenate([train_targets1, ngatrain_targets], axis=0)
    test_targets1 = np.concatenate([test_targets1, ngatest_targets], axis=0)

    return train_data1, test_data1, train_targets1, test_targets1, feature_names
コード例 #2
0
def mergeNGAdata(
        nametrain='/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest='/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        filenamenga='/Users/aklimasewski/Documents/data/NGA_mag2_9.csv',
        n=13):
    '''
    Read in NGA data file, train test split and merge with cybershake data

    Parameters
    ----------
    nametrain: path for cybershake training data csv
    nametest: path for cybershake testing data csv
    filenamenga: integer number of hidden layers
    n: number of model input features

    Returns
    -------
    train_data1: numpy array of training features
    test_data1: numpy array of testing features
    train_targets1: numpy array of training features
    test_targets1: numpy array of testing features
    feature_names: numpy array feature names
    '''

    from sklearn.model_selection import train_test_split

    train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        n=n)
    train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                    feature_names)

    # filenamenga = '/Users/aklimasewski/Documents/data/NGA_mag2_9.csv'
    nga_data1, nga_targets1, feature_names = readindataNGA(filenamenga, n)
    nga_data1, feature_names = add_azNGA(filenamenga, nga_data1, feature_names)

    # ngatrain, ngatest, ngatrain_targets, ngatest_targets = train_test_split(nga_data1,nga_targets1, test_size=0.2, random_state=1)
    ngatrain, ngatest, ngatrain_targets, ngatest_targets = train_test_split(
        nga_data1, nga_targets1, test_size=0.2, random_state=1)

    train_data1 = np.concatenate([train_data1, ngatrain], axis=0)
    test_data1 = np.concatenate([test_data1, ngatest], axis=0)

    train_data1 = np.concatenate([train_data1, ngatrain], axis=0)
    test_data1 = np.concatenate([test_data1, ngatest], axis=0)

    train_targets1 = np.concatenate([train_targets1, ngatrain_targets], axis=0)
    test_targets1 = np.concatenate([test_targets1, ngatest_targets], axis=0)

    return train_data1, test_data1, train_targets1, test_targets1, feature_names
コード例 #3
0
# path of trained model files
folder_path = '/Users/aklimasewski/Documents/model_results/base/ANNbase_nga_20ep_50hidden/'
folder_pathNGA = folder_path + 'NGAtest/'
if not os.path.exists(folder_pathNGA):
    os.makedirs(folder_pathNGA)

n = 13
az = True
transform_method = 'Norm'

# compare to NGA data
filenamenga = '/Users/aklimasewski/Documents/data/NGA_mag2_9.csv'

nga_data1, nga_targets1, feature_names = readindataNGA(filenamenga, n)
nga_data1, feature_names = add_azNGA(filenamenga, nga_data1, feature_names)
# nga_data1,feature_names = add_locfeatNGA(filenamenga,nga_data1,feature_names)

if az == True:
    nga_data1, feature_names = add_azNGA(nga_data1, feature_names)

# read in cyber shake trainineg and testing data
train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
    nametrain=
    '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
    nametest='/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
    n=n)
train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                feature_names)

x_train, y_train, x_nga, y_nga, x_range, x_train_raw, x_nga_raw = transform_data(
コード例 #4
0
def mergeNGAdata_cells(
        nametrain='/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest='/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        filenamenga='/Users/aklimasewski/Documents/data/NGA_mag2_9.csv',
        n=13):
    '''
    Read in NGA data file, train test split and merge with cybershake data

    Parameters
    ----------
    nametrain: path for cybershake training data csv
    nametest: path for cybershake testing data csv
    filenamenga: integer number of hidden layers
    n: number of model input features

    Returns
    -------
    train_data1: numpy array of training features
    test_data1: numpy array of testing features
    train_targets1: numpy array of training features
    test_targets1: numpy array of testing features
    feature_names: numpy array feature names
       '''

    from sklearn.model_selection import train_test_split

    cells = pd.read_csv(folder_path + 'gridpointslatlon_train.csv',
                        header=0,
                        index_col=0)
    cells_test = pd.read_csv(folder_path + 'gridpointslatlon_test.csv',
                             header=0,
                             index_col=0)
    cells_nga = pd.read_csv(folder_path + 'gridpointslatlon_nga.csv',
                            header=0,
                            index_col=0)

    train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        n=n)
    train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                    feature_names)

    nga_data1, nga_targets1, feature_names = readindataNGA(filenamenga, n)
    nga_data1, feature_names = add_azNGA(filenamenga, nga_data1, feature_names)
    nga_data1 = np.concatenate([nga_data1, cells_nga], axis=0)

    ngatrain, ngatest, ngatrain_targets, ngatest_targets = train_test_split(
        nga_data1, nga_targets1, test_size=0.2, random_state=1)

    feature_names = np.concatenate([
        feature_names,
        [
            'eventlat',
            'eventlon',
            'midlat',
            'midlon',
            'sitelat',
            'sitelon',
        ]
    ],
                                   axis=0)

    train_data1 = np.concatenate([train_data1, cells], axis=1)
    test_data1 = np.concatenate([test_data1, cells_test], axis=1)

    train_data1 = np.concatenate([train_data1, ngatrain], axis=0)
    test_data1 = np.concatenate([test_data1, ngatest], axis=0)

    train_targets1 = np.concatenate([train_targets1, ngatrain_targets], axis=0)
    test_targets1 = np.concatenate([test_targets1, ngatest_targets], axis=0)

    return train_data1, test_data1, train_targets1, test_targets1, feature_names