def __init__(self): config = Config() self.ts_queue = queue.Queue() self.max_threads = Response().get_max_threads() self.video_format = config.getValue("video_format") self.ffmpeg_path = config.getValue("ffmpeg_path") self.key_host = Response().get_key_url()
EmbeddingLoss, primitive_loss, evaluate_miou, ) from src.segment_utils import to_one_hot, SIOU_matched_segments from src.utils import visualize_point_cloud_from_labels, visualize_point_cloud from src.dataset import generator_iter from src.mean_shift import MeanShift from src.segment_utils import SIOU_matched_segments from src.residual_utils import Evaluation import time from src.primitives import SaveParameters # Use only one gpu. os.environ["CUDA_VISIBLE_DEVICES"] = "0" config = Config(sys.argv[1]) if_normals = config.normals userspace = "" Loss = EmbeddingLoss(margin=1.0) if config.mode == 0: # Just using points for training model = PrimitivesEmbeddingDGCNGn( embedding=True, emb_size=128, primitives=True, num_primitives=10, loss_function=Loss.triplet_loss, mode=config.mode, num_channels=3,
from read_config import Config from src.VisUtils import tessalate_points from src.dataset import DataSetControlPointsPoisson from src.dataset import generator_iter from src.fitting_utils import sample_points_from_control_points_ from src.fitting_utils import up_sample_points_torch_in_range from src.loss import control_points_permute_reg_loss from src.loss import laplacian_loss from src.loss import ( uniform_knot_bspline, spline_reconstruction_loss, ) from src.model import DGCNNControlPoints from src.primitive_forward import optimize_open_spline config = Config(sys.argv[1]) control_decoder = DGCNNControlPoints(20, num_points=10, mode=config.mode) control_decoder = torch.nn.DataParallel(control_decoder) control_decoder.cuda() split_dict = {"train": config.num_train, "val": config.num_val, "test": config.num_test} dataset = DataSetControlPointsPoisson( config.dataset_path, config.batch_size, splits=split_dict, size_v=config.grid_size, size_u=config.grid_size) nu, nv = uniform_knot_bspline(20, 20, 3, 3, 30)
from src.VisUtils import tessalate_points from src.dataset import DataSetControlPointsPoisson from src.dataset import generator_iter from src.fitting_utils import sample_points_from_control_points_ from src.fitting_utils import up_sample_points_torch_in_range from src.loss import control_points_permute_reg_loss from src.loss import laplacian_loss from src.loss import ( uniform_knot_bspline, spline_reconstruction_loss, ) from src.model import DGCNNControlPoints from src.primitive_forward import optimize_close_spline from src.utils import chamfer_distance_single_shape config = Config(sys.argv[1]) userspace = ".." print(config.mode) control_decoder = DGCNNControlPoints(20, num_points=10, mode=config.mode) control_decoder = torch.nn.DataParallel(control_decoder) control_decoder.cuda() config.batch_size = 1 split_dict = { "train": config.num_train, "val": config.num_val, "test": config.num_test } dataset = DataSetControlPointsPoisson(path=config.dataset_path, batch_size=config.batch_size,