#source_train_images = "D:/project2 AI/facedata/facedatatrain" #source_train_labels = "D:/project2 AI/facedata/facedatatrainlabels" #source_test_images = "D:/project2 AI/facedata/facedatatest" #source_test_labels = "D:/project2 AI/facedata/facedatatestlabels" source_train_images = "/Users/jainipatel/Downloads/data/facedata/facedatatrain" source_train_labels = "/Users/jainipatel/Downloads/data/facedata/facedatatrainlabels" source_test_images = "/Users/jainipatel/Downloads/data/facedata/facedatatest" source_test_labels = "/Users/jainipatel/Downloads/data/facedata/facedatatestlabels" fetch_data_train = rd.load_data(source_train_images, 451, 70, 60) fetch_data_test = rd.load_data(source_test_images, 150, 70, 60) Y_train_labels = labels = rd.load_label(source_train_labels) X_train = rd.matrix_transformation(fetch_data_train, 70, 60) X_test = rd.matrix_transformation(fetch_data_test, 70, 60) Y_test_labels = rd.load_label(source_test_labels) tem = 0.99 accuracy_array = [] percent_training = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] total_training_time = 0 start1 = time.time() for i in range(0, 10): start = time.time() tem -= 0.10 if tem < 0: tem = 0.001 x_train, x_test, y_train, y_test = train_test_split(X_train,
source_train_images = "/Users/jainipatel/Downloads/data/digitdata/trainingimages" source_train_labels = "/Users/jainipatel/Downloads/data/digitdata/traininglabels" source_test_images = "/Users/jainipatel/Downloads/data/digitdata/testimages" source_test_labels = "/Users/jainipatel/Downloads/data/digitdata/testlabels" # source_train_images = "D:/project2 AI/digitdata/trainingimages" # source_train_labels = "D:/project2 AI/digitdata/traininglabels" # source_test_images = "D:/project2 AI/digitdata/testimages" # source_test_labels = "D:/project2 AI/digitdata/testlabels" fetch_data_train = rd.load_data(source_train_images, 5000, 28, 28) fetch_data_test = rd.load_data(source_test_images, 1000, 28, 28) Y_train_labels = labels = rd.load_label(source_train_labels) X_train = rd.matrix_transformation(fetch_data_train, 28, 28) X_test = rd.matrix_transformation(fetch_data_test, 28, 28) Y_test_labels = rd.load_label(source_test_labels) # print(len(Y1)) tem = 0.99 accuracy_array = [] percent_training = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] total_training_time = 0 start1 = time.time() for i in range(0, 10): start = time.time() tem -= 0.10 if tem < 0: tem = 0.001