コード例 #1
0
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    reader = task_reader.SequenceLabelReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
        random_seed=args.random_seed)

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config)
                scheduled_lr = optimization(loss=graph_vars["loss"],
                                            warmup_steps=warmup_steps,
                                            num_train_steps=max_train_steps,
                                            learning_rate=args.learning_rate,
                                            train_program=train_program,
                                            startup_prog=startup_prog,
                                            weight_decay=args.weight_decay,
                                            scheduler=args.lr_scheduler,
                                            use_fp16=args.use_fp16,
                                            loss_scaling=args.loss_scaling)

                fluid.memory_optimize(input_program=train_program,
                                      skip_opt_set=[
                                          graph_vars["loss"].name,
                                          graph_vars["labels"].name,
                                          graph_vars["infers"].name,
                                          graph_vars["seq_lens"].name
                                      ])

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(exe,
                            args.init_checkpoint,
                            main_program=startup_prog,
                            use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(exe,
                                    args.init_pretraining_params,
                                    main_program=startup_prog,
                                    use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe,
                        args.init_checkpoint,
                        main_program=startup_prog,
                        use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                           loss_name=graph_vars["loss"].name,
                                           exec_strategy=exec_strategy,
                                           main_program=train_program)

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                          main_program=test_prog,
                                          share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
                    outputs = evaluate(train_exe, train_program,
                                       train_pyreader, graph_vars,
                                       args.num_labels, "train", dev_count)
                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (outputs["lr"] if
                                                          warmup_steps > 0 else
                                                          args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = reader.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin
                    print(
                        "epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                        "f1: %f, precision: %f, recall: %f, speed: %f steps/s"
                        % (current_epoch, current_example, num_train_examples,
                           steps, outputs["loss"], outputs["f1"],
                           outputs["precision"], outputs["recall"],
                           args.skip_steps / used_time))
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(args.dev_set,
                                                  batch_size=args.batch_size,
                                                  epoch=1,
                                                  shuffle=False))
                        evaluate(exe, test_prog, test_pyreader, graph_vars,
                                 args.num_labels, "dev")
                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(args.test_set,
                                                  batch_size=args.batch_size,
                                                  epoch=1,
                                                  shuffle=False))
                        evaluate(exe, test_prog, test_pyreader, graph_vars,
                                 args.num_labels, "test")

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(args.dev_set,
                                  batch_size=args.batch_size,
                                  epoch=1,
                                  shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels,
                 "dev")

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(args.test_set,
                                  batch_size=args.batch_size,
                                  epoch=1,
                                  shuffle=False))
        print("Final test result:")
        evaluate(exe, test_prog, test_pyreader, graph_vars, args.num_labels,
                 "test")
コード例 #2
0
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    reader = task_reader.SequenceLabelReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
        random_seed=args.random_seed,
        task_id=args.task_id)

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            if args.batch_size < args.max_seq_len:
                raise ValueError(
                    'if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d'
                    % (args.batch_size, args.max_seq_len))

            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config)
                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    incr_every_n_steps=args.incr_every_n_steps,
                    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                    incr_ratio=args.incr_ratio,
                    decr_ratio=args.decr_ratio)

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
                     (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config)

        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(trainer_id,
                    trainers=worker_endpoints_env,
                    current_endpoint=current_endpoint,
                    program=train_program if args.do_train else test_prog,
                    startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            log.info(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(exe,
                            args.init_checkpoint,
                            main_program=startup_prog,
                            use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(exe,
                                    args.init_pretraining_params,
                                    main_program=startup_prog,
                                    use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe,
                        args.init_checkpoint,
                        main_program=startup_prog,
                        use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                           loss_name=graph_vars["loss"].name,
                                           exec_strategy=exec_strategy,
                                           main_program=train_program,
                                           num_trainers=nccl2_num_trainers,
                                           trainer_id=nccl2_trainer_id)

        train_pyreader.set_batch_generator(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                          main_program=test_prog,
                                          share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
                    fetch_list = [
                        graph_vars["num_infer"].name,
                        graph_vars["num_label"].name,
                        graph_vars["num_correct"].name,
                        graph_vars["loss"].name,
                        graph_vars['learning_rate'].name,
                    ]

                    out = train_exe.run(fetch_list=fetch_list)
                    num_infer, num_label, num_correct, np_loss, np_lr = out
                    lr = float(np_lr[0])
                    loss = np_loss.mean()
                    precision, recall, f1 = calculate_f1(
                        num_label, num_infer, num_correct)
                    if args.verbose:
                        log.info(
                            "train pyreader queue size: %d, learning rate: %f"
                            % (train_pyreader.queue.size(),
                               lr if warmup_steps > 0 else args.learning_rate))

                    current_example, current_epoch = reader.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin
                    log.info(
                        "epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                        "f1: %f, precision: %f, recall: %f, speed: %f steps/s"
                        % (current_epoch, current_example, num_train_examples,
                           steps, loss, f1, precision, recall,
                           args.skip_steps / used_time))
                    time_begin = time.time()

                if nccl2_trainer_id == 0 and steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if nccl2_trainer_id == 0 and steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        evaluate_wrapper(reader, exe, test_prog, test_pyreader,
                                         graph_vars, current_epoch, steps)
                    # evaluate test set
                    if args.do_test:
                        predict_wrapper(reader, exe, test_prog, test_pyreader,
                                        graph_vars, current_epoch, steps)

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if nccl2_trainer_id == 0 and args.do_val:
        if not args.do_train:
            current_example, current_epoch = reader.get_train_progress()
        evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                         current_epoch, 'final')

    if nccl2_trainer_id == 0 and args.do_test:
        if not args.do_train:
            current_example, current_epoch = reader.get_train_progress()
        predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                        current_epoch, 'final')