コード例 #1
0
def create_train_and_evaluate(pipeline_proto):
    """Creates a callable to train and evaluate.

  Args:
    pipeline_proto: an instance of pipeline_pb2.Pipeline.

  Returns:
    a callable to train and evalute.
  """
    if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
        raise ValueError('pipeline_proto has to be an instance of Pipeline.')

    # Create train_spec.

    train_config = pipeline_proto.train_config
    train_input_fn = reader.get_input_fn(pipeline_proto.train_reader)

    train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,
                                        max_steps=train_config.max_steps)

    # Create eval_spec.

    eval_config = pipeline_proto.eval_config
    eval_input_fn = reader.get_input_fn(pipeline_proto.eval_reader)

    # eval_hooks = [
    #     EvalSummarySaverHook(output_dir=pipeline_proto.model_dir + '/eval')
    # ]
    eval_hooks = None
    eval_spec = tf.estimator.EvalSpec(
        input_fn=eval_input_fn,
        steps=eval_config.steps,
        hooks=eval_hooks,
        start_delay_secs=eval_config.start_delay_secs,
        throttle_secs=eval_config.throttle_secs)

    # Set session config.

    session_config = tf.ConfigProto()
    session_config.allow_soft_placement = True
    session_config.gpu_options.allow_growth = True

    # Create estimator.

    run_config = tf.estimator.RunConfig(
        save_summary_steps=train_config.save_summary_steps,
        save_checkpoints_steps=train_config.save_checkpoints_steps,
        session_config=session_config,
        keep_checkpoint_max=train_config.keep_checkpoint_max,
        log_step_count_steps=train_config.log_step_count_steps)

    model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)

    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       model_dir=pipeline_proto.model_dir,
                                       config=run_config)

    # Train and evaluate.

    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
コード例 #2
0
ファイル: trainer.py プロジェクト: yekeren/WSSGG
def train_and_evaluate(pipeline_proto, model_dir, use_mirrored_strategy=False):
    """Starts the estimator trainval loop.

  Args:
    pipeline_proto: An instance of pipeline_pb2.Pipeline.
    model_dir: Path to the directory saving checkpoint files.
  """
    if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
        raise ValueError('pipeline_proto has to be an instance of Pipeline.')

    # Create train_spec.
    train_config = pipeline_proto.train_config
    train_input_fn = reader.get_input_fn(pipeline_proto.train_reader,
                                         is_training=True)
    train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,
                                        max_steps=train_config.max_steps)

    exporter = BestCheckpointCopier(name='ckpts',
                                    checkpoints_to_keep=4,
                                    score_metric='metrics/accuracy',
                                    compare_fn=lambda x, y: x.score > y.score)

    # Create eval_spec.
    eval_config = pipeline_proto.eval_config
    eval_input_fn = reader.get_input_fn(pipeline_proto.eval_reader,
                                        is_training=False)
    eval_spec = tf.estimator.EvalSpec(
        input_fn=eval_input_fn,
        steps=eval_config.steps,
        start_delay_secs=eval_config.start_delay_secs,
        throttle_secs=eval_config.throttle_secs,
        exporters=[exporter])

    # Create run_config.
    strategy = None
    if use_mirrored_strategy:
        strategy = tf.contrib.distribute.MirroredStrategy()
    run_config = tf.estimator.RunConfig(
        train_distribute=strategy,
        session_config=tf.compat.v1.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.compat.v1.GPUOptions(
                allow_growth=True, per_process_gpu_memory_fraction=1.0)),
        save_summary_steps=train_config.save_summary_steps,
        save_checkpoints_steps=train_config.save_checkpoints_steps,
        keep_checkpoint_max=train_config.keep_checkpoint_max,
        log_step_count_steps=train_config.log_step_count_steps)

    # Train and evaluate.
    model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)
    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       model_dir=model_dir,
                                       config=run_config)
    tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
コード例 #3
0
ファイル: trainer.py プロジェクト: yekeren/WSSGG
def _test(pipeline_proto, model_dir, testing_res_file):
    """Starts to test.

  Args:
    pipeline_proto: An instance of pipeline_pb2.Pipeline.
    model_dir: Path to the directory saving checkpoint files.
    testing_res_file: Path to the output result file.
  """
    # Create eval_spec.
    eval_input_fn = reader.get_input_fn(pipeline_proto.test_reader,
                                        is_training=False)

    run_config = tf.estimator.RunConfig(
        session_config=tf.ConfigProto(allow_soft_placement=True,
                                      gpu_options=tf.GPUOptions(
                                          allow_growth=True)))

    # Evaluate.
    model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)
    estimator = tf.estimator.Estimator(
        model_fn=model_fn,
        model_dir=None,  # This is the dir to write summaries.
        config=run_config)
    checkpoint_dir = os.path.join(model_dir, 'ckpts')
    checkpoint_number = 0
    for file_name in os.listdir(checkpoint_dir):
        m = re.match(r'model.ckpt-(\d+).meta', file_name)
        if m:
            logging.info('Found checkpoint %s.',
                         '.'.join(file_name.split('.')[:-1]))
            checkpoint_number = max(int(m.group(1)), checkpoint_number)

    if checkpoint_number > 0:
        testing_result_csv_file = os.path.join(checkpoint_dir,
                                               testing_res_file)

        # Do not re-evaluate if previous testing result is found.
        if os.path.isfile(testing_result_csv_file):
            logging.info('Found previous testing results %s.',
                         testing_result_csv_file)

        # Evaluate the best checkpoint on the test set.
        else:
            checkpoint_path = os.path.join(checkpoint_dir,
                                           'model.ckpt-%d' % checkpoint_number)
            logging.info('Found the best checkpoint %s.', checkpoint_path)

            metrics = estimator.evaluate(eval_input_fn,
                                         checkpoint_path=checkpoint_path,
                                         steps=40000)
            keys = [
                key for key in sorted(metrics.keys())
                if key.startswith('metrics')
            ]
            with open(testing_result_csv_file, 'w') as f:
                f.write(','.join(keys) + '\n')
                f.write(','.join(['%.4lf' % metrics[key]
                                  for key in keys]) + '\n')
            logging.info('Testing results are written to %s.',
                         testing_result_csv_file)
コード例 #4
0
ファイル: trainer.py プロジェクト: yekeren/WSSGG
def _evaluate(pipeline_proto, model_dir):
    """Starts a evaluation.

  Args:
    pipeline_proto: An instance of pipeline_pb2.Pipeline.
    model_dir: Path to the directory saving checkpoint files.
  """
    # Create eval_spec.
    eval_config = pipeline_proto.eval_config
    eval_input_fn = reader.get_input_fn(pipeline_proto.eval_reader,
                                        is_training=False)

    run_config = tf.estimator.RunConfig(
        session_config=tf.ConfigProto(allow_soft_placement=True,
                                      gpu_options=tf.GPUOptions(
                                          allow_growth=True)))

    checkpoint_path = tf.train.latest_checkpoint(model_dir)

    # Evaluate.
    model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)
    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       model_dir=None,
                                       config=run_config)
    estimator.evaluate(eval_input_fn,
                       checkpoint_path=checkpoint_path,
                       steps=eval_config.steps)
コード例 #5
0
def predict(pipeline_proto, checkpoint_path=None, yield_single_examples=False):
  """Creates a callable to train and evaluate.

  Args:
    pipeline_proto: an instance of pipeline_pb2.Pipeline.
    yield_single_examples: If true, yield single examples.

  Yields:
    example: The prediction result.
  """
  if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
    raise ValueError('pipeline_proto has to be an instance of Pipeline.')

  predict_input_fn = reader.get_input_fn(pipeline_proto.eval_reader)

  # Create estimator.

  model_fn = _create_model_fn(pipeline_proto)

  session_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))

  run_config = tf.estimator.RunConfig(session_config=session_config)

  estimator = tf.estimator.Estimator(
      model_fn=model_fn, model_dir=pipeline_proto.model_dir, config=run_config)

  # Predict results.

  for example in estimator.predict(
      input_fn=predict_input_fn,
      checkpoint_path=checkpoint_path,
      yield_single_examples=yield_single_examples):
    yield example
コード例 #6
0
ファイル: trainer.py プロジェクト: yekeren/VCR
def train_and_evaluate(pipeline_proto, model_dir):
  """Starts the estimator trainval loop.

  Args:
    pipeline_proto: An instance of pipeline_pb2.Pipeline.
    model_dir: Path to the directory saving checkpoint files.
  """
  if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
    raise ValueError('pipeline_proto has to be an instance of Pipeline.')

  # Create train_spec.
  train_config = pipeline_proto.train_config
  train_input_fn = reader.get_input_fn(pipeline_proto.train_reader,
                                       is_training=True)
  train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn,
                                      max_steps=train_config.max_steps)

  # Create eval_spec.
  eval_config = pipeline_proto.eval_config
  eval_input_fn = reader.get_input_fn(pipeline_proto.eval_reader,
                                      is_training=False)
  eval_spec = tf.estimator.EvalSpec(
      input_fn=eval_input_fn,
      steps=eval_config.steps,
      start_delay_secs=eval_config.start_delay_secs,
      throttle_secs=eval_config.throttle_secs)

  # Create run_config.
  run_config = tf.estimator.RunConfig(
      save_summary_steps=train_config.save_summary_steps,
      save_checkpoints_steps=train_config.save_checkpoints_steps,
      keep_checkpoint_max=train_config.keep_checkpoint_max,
      log_step_count_steps=train_config.log_step_count_steps)

  # Train and evaluate.
  model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)
  estimator = tf.estimator.Estimator(model_fn=model_fn,
                                     model_dir=model_dir,
                                     config=run_config)
  tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
コード例 #7
0
ファイル: trainer.py プロジェクト: yekeren/WSSGG
def predict(pipeline_proto,
            model_dir=None,
            yield_single_examples=False,
            params=None):
    """Generates inference results.

  Args:
    pipeline_proto: A pipeline_pb2.Pipeline proto.
    model_dir: Path to the directory saving model checkpoints.
    yield_single_examples: If true, yield a single example.
    params: Additional parameters to be passed to tf.Estimator.

  Yields:
    example: inference results.
  """
    if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
        raise ValueError('pipeline_proto has to be an instance of Pipeline.')

    predict_input_fn = reader.get_input_fn(pipeline_proto.eval_reader,
                                           is_training=False)

    # Create estimator.
    model_fn = _create_model_fn(pipeline_proto)

    run_config = tf.estimator.RunConfig(
        session_config=tf.compat.v1.ConfigProto(
            gpu_options=tf.compat.v1.GPUOptions(allow_growth=True)))

    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       model_dir=model_dir,
                                       config=run_config,
                                       params=params)

    # Predict results.
    checkpoint_path = tf.train.latest_checkpoint(model_dir)
    assert checkpoint_path is not None

    logging.info('Loading checkpoint %s...', checkpoint_path)
    print('Loading checkpoint %s...' % checkpoint_path)
    for example in estimator.predict(
            input_fn=predict_input_fn,
            checkpoint_path=checkpoint_path,
            yield_single_examples=yield_single_examples):
        yield example
コード例 #8
0
ファイル: trainer.py プロジェクト: yekeren/WSSGG
def train(pipeline_proto, model_dir, use_mirrored_strategy=False):
    """Starts the estimator training loop.

  Args:
    pipeline_proto: An instance of pipeline_pb2.Pipeline.
    model_dir: Path to the directory saving checkpoint files.
  """
    if not isinstance(pipeline_proto, pipeline_pb2.Pipeline):
        raise ValueError('pipeline_proto has to be an instance of Pipeline.')

    # Create train_spec.
    train_config = pipeline_proto.train_config
    train_input_fn = reader.get_input_fn(pipeline_proto.train_reader,
                                         is_training=True)

    # Create run_config.
    strategy = None
    if use_mirrored_strategy:
        strategy = tf.contrib.distribute.MirroredStrategy()

    run_config = tf.estimator.RunConfig(
        train_distribute=strategy,
        session_config=tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True)),
        save_summary_steps=train_config.save_summary_steps,
        save_checkpoints_steps=train_config.save_checkpoints_steps,
        keep_checkpoint_max=train_config.keep_checkpoint_max,
        log_step_count_steps=train_config.log_step_count_steps)

    # Train.
    model_fn = _create_model_fn(pipeline_proto, is_chief=run_config.is_chief)
    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       model_dir=model_dir,
                                       config=run_config)
    estimator.train(train_input_fn, max_steps=train_config.max_steps)
コード例 #9
0
def main(_):
    logging.set_verbosity(logging.DEBUG)

    for gpu in tf.config.experimental.list_physical_devices('GPU'):
        tf.config.experimental.set_memory_growth(gpu, True)

    pipeline_proto = _load_pipeline_proto(FLAGS.pipeline_proto)
    vocab = _load_vocab_file(FLAGS.vocab_file)

    # Get `next_examples_ts' tensor.
    if 'train' in FLAGS.output_jsonl_file:
        input_fn = reader.get_input_fn(pipeline_proto.train_reader,
                                       is_training=False)
    else:
        input_fn = reader.get_input_fn(pipeline_proto.eval_reader,
                                       is_training=False)

    iterator = input_fn().make_initializable_iterator()
    next_examples_ts = iterator.get_next()

    # Build model that takes placeholder as inputs, and predicts the logits.
    frcnn_dims = pipeline_proto.eval_reader.vcr_text_frcnn_reader.frcnn_feature_dims
    (label_pl, choices_pl, choices_tag_pl,
     choices_len_pl) = (tf.placeholder(tf.int32, [1]),
                        tf.placeholder(tf.int32, [1, NUM_CHOICES, None]),
                        tf.placeholder(tf.int32, [1, NUM_CHOICES, None]),
                        tf.placeholder(tf.int32, [1, NUM_CHOICES]))
    (num_detections_pl, detection_boxes_pl, detection_classes_pl,
     detection_scores_pl,
     detection_features_pl) = (tf.placeholder(tf.int32, [1]),
                               tf.placeholder(tf.float32, [1, None, 4]),
                               tf.placeholder(tf.int32, [1, None]),
                               tf.placeholder(tf.float32, [1, None]),
                               tf.placeholder(tf.float32,
                                              [1, None, frcnn_dims]))

    model = builder.build(pipeline_proto.model, is_training=False)
    logits_ts = model.predict({
        InputFields.num_detections: num_detections_pl,
        InputFields.detection_boxes: detection_boxes_pl,
        InputFields.detection_classes: detection_classes_pl,
        InputFields.detection_scores: detection_scores_pl,
        InputFields.detection_features: detection_features_pl,
        model._field_choices: choices_pl,
        model._field_choices_tag: choices_tag_pl,
        model._field_choices_len: choices_len_pl,
    })[FIELD_ANSWER_PREDICTION]

    losses_ts = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_ts,
                                                        labels=tf.one_hot(
                                                            label_pl,
                                                            depth=NUM_CHOICES))
    saver = tf.train.Saver()

    # Find the latest checkpoint file.
    ckpt_path = tf.train.latest_checkpoint(FLAGS.model_dir)
    assert ckpt_path is not None

    def _calc_score_and_loss(choices, choice_tag, choices_len, label,
                             num_detections, detection_boxes, detection_clases,
                             detection_scores, detection_features):
        """Get the VCR matching scores and losses."""
        (scores, losses) = sess.run(
            [logits_ts, losses_ts],
            feed_dict={
                label_pl: np.expand_dims(label, 0),
                choices_pl: np.expand_dims(choices, 0),
                choices_tag_pl: np.expand_dims(choices_tag, 0),
                choices_len_pl: np.expand_dims(choices_len, 0),
                num_detections_pl: np.expand_dims(num_detections, 0),
                detection_boxes_pl: np.expand_dims(detection_boxes, 0),
                detection_classes_pl: np.expand_dims(detection_clases, 0),
                detection_scores_pl: np.expand_dims(detection_scores, 0),
                detection_features_pl: np.expand_dims(detection_features, 0),
            })
        return scores[0], losses[0]

    # Run inference using the pretrained Bert model.
    with tf.Session() as sess, open(FLAGS.output_jsonl_file, 'w') as output_fp:
        sess.run(iterator.initializer)
        sess.run(tf.tables_initializer())
        saver.restore(sess, ckpt_path)
        logging.info('Restore from %s.', ckpt_path)

        batch_id = 0
        while True:
            batch_id += 1
            try:
                inputs_batched = sess.run(next_examples_ts)
                batch_size = len(inputs_batched[InputFields.annot_id])

                masks = np.array([[MASK_ID], [MASK_ID], [MASK_ID], [MASK_ID]])
                ones = np.array([[1], [1], [1], [1]])

                for example_id in range(batch_size):

                    (annot_id, choices, choices_tag, choices_len, label) = (
                        inputs_batched[
                            InputFields.annot_id][example_id].decode('utf8'),
                        inputs_batched[model._field_choices][example_id],
                        inputs_batched[model._field_choices_tag][example_id],
                        inputs_batched[model._field_choices_len][example_id],
                        inputs_batched[model._field_label][example_id])
                    (num_detections, detection_boxes, detection_clases,
                     detection_scores, detection_features) = (
                         inputs_batched[InputFields.num_detections]
                         [example_id], inputs_batched[
                             InputFields.detection_boxes][example_id],
                         inputs_batched[InputFields.detection_classes]
                         [example_id], inputs_batched[
                             InputFields.detection_scores][example_id],
                         inputs_batched[
                             InputFields.detection_features][example_id])

                    # Scores of the original choices.
                    orig_scores, orig_losses = _calc_score_and_loss(
                        choices, choices_tag, choices_len, label,
                        num_detections, detection_boxes, detection_clases,
                        detection_scores, detection_features)

                    # Adversarial atacking.
                    max_losses = np.zeros(NUM_CHOICES)
                    max_losses_choices = choices

                    if FLAGS.rationale:
                        sep_pos = np.where(choices == SEP_ID)[1].take(
                            [1, 3, 5, 7])
                    else:
                        sep_pos = np.where(choices == SEP_ID)[1]

                    result_losses = [[] for _ in range(4)]
                    result_tokens = [[] for _ in range(4)]

                    for pos_id in range(sep_pos.min() + 1, choices_len.max()):
                        # Compute the new losses.
                        new_choices = np.concatenate([
                            choices[:, :pos_id], masks, choices[:, pos_id + 1:]
                        ], -1)
                        new_choices_tag = np.concatenate([
                            choices_tag[:, :pos_id], -ones,
                            choices_tag[:, pos_id + 1:]
                        ], -1)
                        scores, losses = _calc_score_and_loss(
                            new_choices, new_choices_tag, choices_len, label,
                            num_detections, detection_boxes, detection_clases,
                            detection_scores, detection_features)

                        # Update the maximum values.
                        token_id = choices[:, pos_id]
                        is_valid = np.logical_not(
                            np.logical_or(
                                token_id == PAD_ID,
                                np.logical_or(token_id == CLS_ID,
                                              token_id == SEP_ID)))

                        for choice_id in range(4):
                            if is_valid[choice_id]:
                                result_losses[choice_id].append(
                                    round(float(losses[choice_id]), 4))
                                result_tokens[choice_id].append(
                                    vocab[choices[choice_id][pos_id]])

                        # Maximize loss.
                        adversarial_select_cond = np.logical_and(
                            losses > max_losses, is_valid)
                        max_losses_choices = np.where(
                            np.expand_dims(adversarial_select_cond, -1),
                            new_choices, max_losses_choices)
                        max_losses = np.maximum(max_losses, losses)

                    #END: for pos_id in range(sep_pos.min() + 1, choices_len.max()):

                    choices = pack_tensor_values(choices, choices_len, vocab)
                    adversarial_choices = pack_tensor_values(
                        max_losses_choices, choices_len, vocab)

                    output_annot = {
                        'annot_id': annot_id,
                        'label': int(label),
                        'choices': choices,
                        'adversarial_choices': adversarial_choices,
                        'result_losses': result_losses,
                        'result_tokens': result_tokens,
                    }
                    # print(label)
                    # for i in range(4):
                    #   print(choices[i])
                    #   print(adversarial_choices[i])
                    output_fp.write(json.dumps(output_annot) + '\n')

                if batch_id % 10 == 0:
                    logging.info('batch_id=%i', batch_id)

            except tf.errors.OutOfRangeError as ex:
                logging.info('Done!')
                break

    output_fp.close()