コード例 #1
0
def computeAverageConductances(dataDir, testDataDir, simName, trial):
    """
    Function reads conductances for all neurons in the networks, calculates the average conductances
    for each neuron and writes them to a file
    
    """
    N_RA, _ = reading.read_num_neurons(os.path.join(dataDir,
                                                    "num_neurons.bin"))

    t, Vs, Vd, Gexc_d, Ginh_d = reading.read_hh2_buffer(
        os.path.join(testDataDir, "RA/RA0_trial0.bin"))

    Ginh = np.zeros((N_RA, len(t)), np.float32)
    Gexc = np.zeros((N_RA, len(t)), np.float32)

    _, numTestTrials, _, _, _, _, _, _, _, _ = reading.read_jitter(
        os.path.join(testDataDir, "jitter.bin"))

    for testTrial in range(numTestTrials):
        print "Test trial: ", testTrial
        #if testTrial == 1:
        #   break

        for neuronId in range(N_RA):
            t, Vs, Vd, Gexc_d, Ginh_d = reading.read_hh2_buffer(
                os.path.join(
                    testDataDir, "RA/RA" + str(neuronId) + "_trial" +
                    str(testTrial) + ".bin"))

            Ginh[neuronId] += Ginh_d
            Gexc[neuronId] += Gexc_d

    for neuronId in range(N_RA):
        Ginh[neuronId] /= float(numTestTrials)

    np.savez(os.path.join(testDataDir, "averageConductances.npz"),
             t=t,
             Ginh=Ginh,
             Gexc=Gexc)
コード例 #2
0
"""
import reading
import matplotlib.pyplot as plt
import numpy as np

TRAINING_KICK_TIME = 100.0

#filename = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/test/maturationTransition4/jitter.bin"
#fileMature = "/home/eugene/Output/networks/chainGrowth/passiveDendrite/maturationTransition4/mature_16500.bin"

filename = "/mnt/hodgkin/eugene/results/immature/clusters/test/matTrans62/trial4200/jitter.bin"
fileMature = "/mnt/hodgkin/eugene/results/immature/clusters/matTrans62/mature_4200.bin"

N, num_test_trials, \
    probability_soma_spike, average_num_soma_spikes_in_trial, mean_first_soma_spike_time, std_first_soma_spike_time,\
    probability_dend_spike, average_num_dend_spikes_in_trial, mean_first_dend_spike_time, std_first_dend_spike_time = reading.read_jitter(filename)

(_, _, mature_indicators) = reading.read_mature_indicators(fileMature)

mature_neurons = np.where(mature_indicators == 1)[0]

print mature_neurons
print "Number of mature: ", len(mature_neurons)
#mature_neurons = range(N)

mean_first_soma_spike_time_mature = mean_first_soma_spike_time[mature_neurons]
mean_first_dend_spike_time_mature = mean_first_dend_spike_time[mature_neurons]
std_first_soma_spike_time_mature = std_first_soma_spike_time[mature_neurons]
std_first_dend_spike_time_mature = std_first_dend_spike_time[mature_neurons]
probability_soma_spike_mature = probability_soma_spike[mature_neurons]
probability_dend_spike_mature = probability_dend_spike[mature_neurons]
コード例 #3
0
def compare_networkAndPoolConductance(dataDir, testDataDir, outFigureDir,
                                      simName, trial):
    """
    Function reads conductances for all neurons in the network, calculates average total conductances
    and conductances alinged to average bursting times
    """
    N_RA, N_I = reading.read_num_neurons(
        os.path.join(dataDir, "num_neurons.bin"))
    training_neurons = reading.read_training_neurons(
        os.path.join(dataDir, "training_neurons.bin"))
    N_TR = len(training_neurons)

    _, numTestTrials, \
        probability_soma_spike, average_num_soma_spikes_in_trial, mean_first_soma_spike_time, std_first_soma_spike_time,\
        probability_dend_spike, average_num_dend_spikes_in_trial, mean_first_dend_spike_time, std_first_dend_spike_time = reading.read_jitter(os.path.join(testDataDir, "jitter.bin"))

    neuronsWithRobustDendriticSpike = np.where(
        probability_dend_spike >= 0.75)[0]
    meanFirstSomaSpikeOfNeuronsWithRoburstDendriticSpike = mean_first_soma_spike_time[
        neuronsWithRobustDendriticSpike]

    t, Vs, Vd, Gexc_d, Ginh_d, n, h, r, c, Ca = reading.read_hh2_buffer_full(
        os.path.join(testDataDir, "RA/RA0_trial0.bin"))

    Ginh = np.zeros((N_RA, len(t)), np.float32)
    Gexc = np.zeros((N_RA, len(t)), np.float32)

    numOtherNeurons = N_RA - 1

    GinhSumAll = np.zeros(len(t), np.float32)
    GexcSumAll = np.zeros(len(t), np.float32)

    for testTrial in range(numTestTrials):
        print "Test trial: ", testTrial
        #if testTrial == 1:
        #  break
        for neuronId in range(N_RA):
            t, Vs, Vd, Gexc_d, Ginh_d, n, h, r, c, Ca = reading.read_hh2_buffer_full(
                os.path.join(
                    testDataDir, "RA/RA" + str(neuronId) + "_trial" +
                    str(testTrial) + ".bin"))

            Ginh[neuronId] += Ginh_d
            Gexc[neuronId] += Gexc_d

            # sum of conductances for all neurons excluding training
            if neuronId not in training_neurons:
                GinhSumAll += Ginh_d
                GexcSumAll += Gexc_d

    for neuronId in range(N_RA):
        Ginh[neuronId] /= float(numTestTrials)

    GinhSumAll = GinhSumAll / (float(numTestTrials) * float(N_RA - N_TR))
    GexcSumAll = GexcSumAll / (float(numTestTrials) * float(N_RA - N_TR))

    #print np.max(spike_times_d)
    #print np.max(t)

    #window = 100.0 # window size in ms
    window = 50.0

    Gbursted = None  # conductance aligned to bursting time
    Gother = None  # conductance of neurons that did npt burst

    dt = t[1] - t[0]
    window_t = [
        float(i) * dt - window / 2. for i in range(int(window / dt) - 1)
    ]

    GburstedInh_window = np.empty(
        (len(neuronsWithRobustDendriticSpike) - N_TR, int(window / dt) - 1),
        np.float32)  # conductances of all burst neurons aligned to burst time
    GburstedExc_window = np.empty(
        (len(neuronsWithRobustDendriticSpike) - N_TR, int(window / dt) - 1),
        np.float32)  # conductances of all burst neurons aligned to burst time

    # plot conductances for several random bursted neurons
    np.random.seed(1991)

    nid_toPlot = np.random.choice(neuronsWithRobustDendriticSpike,
                                  16,
                                  replace=False)

    nrows = 4
    ncols = 4

    fInh, axarrInh = plt.subplots(nrows=nrows, ncols=ncols)
    fExc, axarrExc = plt.subplots(nrows=nrows, ncols=ncols)

    neuronPlotCounter = 0
    neuronSavedCounter = 0

    for nid, meanFirstSpikeTime in zip(
            neuronsWithRobustDendriticSpike,
            meanFirstSomaSpikeOfNeuronsWithRoburstDendriticSpike):
        if nid in training_neurons:
            continue

        meanFirstSpikeTime = round(int(meanFirstSpikeTime / dt) * dt, 2)

        GburstedInh_window[neuronSavedCounter] = Ginh[nid][
            (t > meanFirstSpikeTime - window / 2.)
            & (t < meanFirstSpikeTime + window / 2.)]
        GburstedExc_window[neuronSavedCounter] = Gexc[nid][
            (t > meanFirstSpikeTime - window / 2.)
            & (t < meanFirstSpikeTime + window / 2.)]

        # normalize conductance by max value
        #Gbursted_window[neuronSavedCounter] /= np.max(Gbursted_window[neuronSavedCounter])

        # normalize to o mean and unit variance
        #Gbursted_window[neuronSavedCounter] = sklearn.preprocessing.scale(Gbursted_window[neuronSavedCounter], axis=0, with_mean=True, with_std=True, copy=True)

        if nid in nid_toPlot:
            row = neuronPlotCounter // 4
            col = neuronPlotCounter % 4
            axarrInh[row, col].plot(window_t,
                                    GburstedInh_window[neuronSavedCounter])
            axarrExc[row, col].plot(window_t,
                                    GburstedExc_window[neuronSavedCounter])
            #axarr[row, col].vlines(meanFirstSpikeTime, 0, np.max(Ginh[nid]))

            if row == 3:
                axarrInh[row, col].set_xlabel('Time (ms)')
                axarrExc[row, col].set_xlabel('Time (ms)')

            if col == 0:
                axarrInh[row, col].set_ylabel('Ginh (mS/cm^2)')
                axarrExc[row, col].set_ylabel('Gexc (mS/cm^2)')

            neuronPlotCounter += 1

        neuronSavedCounter += 1

        #if Gbursted == None:
        #  Gbursted = Ginh[nid[0]][(t > dend_spike_time[0] - window/2.)&(t < dend_spike_time[0] + window/2.)]
        #else:
        #  Gbursted += Ginh[nid[0]][(t > dend_spike_time[0] - window/2.)&(t < dend_spike_time[0] + window/2.)]

        #if Gother == None:
        #  Gother = (GsumAll-Ginh[nid[0]])[(t > dend_spike_time[0] - window/2.)&(t < dend_spike_time[0] + window/2.)]
        #else:
        #  Gother += (GsumAll-Ginh[nid[0]])[(t > dend_spike_time[0] - window/2.)&(t < dend_spike_time[0] + window/2.)]

        #plt.figure()
        #plt.plot(t, Gexc_d)
        #plt.vlines(dend_spike_time[0], 0, np.max(Gexc_d))

        #plt.figure()
        #plt.plot(t, G)
        #plt.vlines(dend_spike_time[0], 0, np.max(G))

    w, h = maximize_figure(fInh.number)
    fInh.savefig(outFigureDir + simName + "_trial" + str(trial) +
                 '_Ginh_examples.png',
                 bbox_inches='tight')
    plt.close(fInh)

    w, h = maximize_figure(fExc.number)
    fExc.savefig(outFigureDir + simName + "_trial" + str(trial) +
                 '_Gexc_examples.png',
                 bbox_inches='tight')
    plt.close(fExc)

    GburstedInh = np.sum(
        GburstedInh_window,
        axis=0) / float(len(neuronsWithRobustDendriticSpike) - N_TR)
    std_GburstedInh = np.std(GburstedInh_window, axis=0)

    GburstedExc = np.sum(
        GburstedExc_window,
        axis=0) / float(len(neuronsWithRobustDendriticSpike) - N_TR)
    std_GburstedExc = np.std(GburstedExc_window, axis=0)

    f = plt.figure()
    plt.plot(window_t, GburstedInh, label='bursted neurons')
    plt.plot(
        window_t, GburstedInh +
        std_GburstedInh / np.sqrt(len(neuronsWithRobustDendriticSpike) - N_TR))
    plt.plot(
        window_t, GburstedInh -
        std_GburstedInh / np.sqrt(len(neuronsWithRobustDendriticSpike) - N_TR))
    plt.xlabel('Time (ms)')
    plt.ylabel('average Ginh (mS/cm^2)')

    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_average_Ginh.png',
              bbox_inches='tight')
    plt.close(f)

    #plt.plot(window_t, Gother / float((N_RA - N_TR - 1)*numNeuronsWithDendSpike), label='other neurons')
    #plt.legend()

    f = plt.figure()
    plt.plot(t, GinhSumAll)
    plt.xlabel('Time (ms)')
    plt.ylabel('total Ginh (mS/cm^2)')
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_total_Ginh.png',
              bbox_inches='tight')
    plt.close(f)

    f = plt.figure()
    plt.plot(window_t, GburstedExc, label='bursted neurons')
    plt.plot(
        window_t, GburstedExc +
        std_GburstedExc / np.sqrt(len(neuronsWithRobustDendriticSpike) - N_TR))
    plt.plot(
        window_t, GburstedExc -
        std_GburstedExc / np.sqrt(len(neuronsWithRobustDendriticSpike) - N_TR))
    plt.xlabel('Time (ms)')
    plt.ylabel('average Gexc (mS/cm^2)')
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_average_Gexc.png',
              bbox_inches='tight')
    plt.close(f)

    #plt.plot(window_t, Gother / float((N_RA - N_TR - 1)*numNeuronsWithDendSpike), label='other neurons')
    #plt.legend()

    f = plt.figure()
    plt.plot(t, GexcSumAll)
    plt.xlabel('Time (ms)')
    plt.ylabel('total Gexc (mS/cm^2)')
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_total_Gexc.png',
              bbox_inches='tight')
    plt.close(f)
コード例 #4
0
def analyze_inhibitory_input_history(dataDir, testDataDir, trial):
    """
    Function compares inhibitory conductance of neurons with 
    conductances of the neurons that burst later
    """
    N_RA, N_I = reading.read_num_neurons(
        os.path.join(dataDir, "num_neurons.bin"))
    training_neurons = set(
        reading.read_training_neurons(
            os.path.join(dataDir, "training_neurons.bin")))

    _, _, activity_history = reading.read_activity_history(
        os.path.join(dataDir, "activity_history_" + str(trial) + ".bin"))

    smoothWindowSize = 25
    smooth_activity_history = np.apply_along_axis(moving_average, 1,
                                                  activity_history,
                                                  smoothWindowSize)

    #print np.any(smooth_activity_history[4] >= 1.0)
    recruited_candidates = np.where(
        np.any(smooth_activity_history[:, smoothWindowSize:] >= 1, axis=1))[0]

    recruited = [c for c in recruited_candidates if c not in training_neurons]
    print training_neurons

    smooth_activity_history = smooth_activity_history[:, trial:
                                                      smoothWindowSize:-1]

    recruitment_time = []
    for r in recruited:
        recruitment_time.append(
            np.where(smooth_activity_history[r] >= 1)[0][0])

    #print recruitment_time



    _, _, \
        _, _, mean_first_soma_spike_time, _,\
        _, _, _, _ = reading.read_jitter(os.path.join(testDataDir, "jitter.bin"))

    recruitment_time, recruited = zip(
        *sorted(zip(recruitment_time, recruited)))

    first_soma_spike_time_recruited = mean_first_soma_spike_time[recruited]

    print zip(recruited, recruitment_time, first_soma_spike_time_recruited)

    trialsBefore = 95
    laterSpiking = 20.0

    for rid, rtime, rfirstSpikeTime in zip(recruited, recruitment_time,
                                           first_soma_spike_time_recruited):
        laterSpikedNeurons = set(
            np.array(recruited)[first_soma_spike_time_recruited >=
                                rfirstSpikeTime + laterSpiking])

        for trialNum in range(rtime - trialsBefore, rtime):
            t, Ginh_d = reading.read_inhibitory_conductance_during_trial(
                os.path.join(dataDir, "Ginh_trial_" + str(trialNum) + ".bin"))

            for nid in laterSpikeNeurons:
                pass

        break
コード例 #5
0
def compare_conductanceOfNetworkNeurons(Ginh, dataDir, testDataDir,
                                        outFigureDir, simName, trial):
    """
    Function compares inhibitory conductance of neurons with 
    conductances of the neurons that burst later
    """
    plt.ioff()

    N_RA, N_I = reading.read_num_neurons(
        os.path.join(dataDir, "num_neurons.bin"))
    training_neurons = reading.read_training_neurons(
        os.path.join(dataDir, "training_neurons.bin"))
    N_TR = len(training_neurons)

    _, numTestTrials, \
        probability_soma_spike, average_num_soma_spikes_in_trial, mean_first_soma_spike_time, std_first_soma_spike_time,\
        probability_dend_spike, average_num_dend_spikes_in_trial, mean_first_dend_spike_time, std_first_dend_spike_time = reading.read_jitter(os.path.join(testDataDir, "jitter.bin"))

    neuronsWithRobustDendriticSpike = np.where(
        probability_dend_spike >= 0.75)[0]
    meanFirstSomaSpikeOfNeuronsWithRoburstDendriticSpike = mean_first_soma_spike_time[
        neuronsWithRobustDendriticSpike]

    print "Robustly firing neurons: ", neuronsWithRobustDendriticSpike
    print "First soma spikes of robust neurons: ", meanFirstSomaSpikeOfNeuronsWithRoburstDendriticSpike

    window = 20.0
    dt = t[1] - t[0]
    window_t = [
        float(i) * dt - window / 2. for i in range(int(window / dt) - 1)
    ]

    #GburstedInh_window = np.empty((len(neuronsWithRobustDendriticSpike) - N_TR, int(window / dt)-1), np.float32) # conductances of all burst neurons aligned to burst time

    # plot conductances for several random bursted neurons
    #np.random.seed(1991)

    #nid_toPlot = np.random.choice(neuronsWithRobustDendriticSpike, 16, replace=False)

    #nrows = 4
    #ncols = 4

    #fInh, axarrInh = plt.subplots(nrows=nrows, ncols=ncols)
    #fExc, axarrExc = plt.subplots(nrows=nrows, ncols=ncols)

    #neuronPlotCounter = 0
    #neuronSavedCounter = 0

    integralConductanceOfAllSpiked = []
    integralConductanceOfAllOther = []

    averageInhConductanceOfRecruitedBeforeBurstTime = []
    averageInhConductanceOfLaterRecruitedBeforeBurstTime = []

    neuronCounter = 0

    for nid, meanFirstSpikeTime in zip(
            neuronsWithRobustDendriticSpike,
            meanFirstSomaSpikeOfNeuronsWithRoburstDendriticSpike):
        if nid in training_neurons:
            continue

        #print "counter = {0}; mean first spike time = {1}".format(neuronCounter, meanFirstSpikeTime)

        meanFirstSpikeTime = round(int(meanFirstSpikeTime / dt) * dt, 2)

        #GburstedInh_window[neuronSavedCounter] = Ginh[nid][(t >meanFirstSpikeTime - window/2.)&(t < meanFirstSpikeTime + window/2.)]

        GburstedInh = Ginh[nid][(t > meanFirstSpikeTime - window / 2.)
                                & (t < meanFirstSpikeTime + window / 2.)]

        #plt.figure()
        #plt.title('Neuron {0} with first spike time {1}'.format(nid, meanFirstSpikeTime))
        #plt.plot(window_t, GburstedInh)
        #ax  = f.add_subplot(511)

        integralConductanceOfSpiked = integral(GburstedInh, dt)
        integralConductanceOfAllSpiked.append(integralConductanceOfSpiked)
        minInhibition = np.min(GburstedInh)

        averageInhConductanceOfRecruitedBeforeBurstTime = np.mean(
            Ginh[nid][t < meanFirstSpikeTime + window / 2.])

        #ax.plot(window_t, GburstedInh)

        # neurons that spike later:
        integralConductanceOfOther = []
        minInhibitionLater = []

        laterSpikedNeurons = np.where((probability_dend_spike >= 0.75) & (
            mean_first_soma_spike_time > meanFirstSpikeTime + window))[0]
        #print "ind of neurons that spiked later: ",laterSpikedNeurons
        print "first spike times of neurons that spiked later: ", mean_first_soma_spike_time[
            laterSpikedNeurons]

        numToPlot = 0
        plotCounter = 0

        for nid_later in laterSpikedNeurons:
            #if i >= numToPlot:
            # break
            GInhLater = Ginh[nid_later][(t > meanFirstSpikeTime - window / 2.)
                                        &
                                        (t < meanFirstSpikeTime + window / 2.)]
            integralConductanceOfOther.append(integral(GInhLater, dt))
            minInhibitionLater.append(np.min(GInhLater))

            if plotCounter < numToPlot:
                plt.figure()
                plt.plot(window_t, GInhLater)
                plt.title('Neuron {0} with later first spike time {1}'.format(
                    nid_later, mean_first_soma_spike_time[nid_later]))

                plotCounter += 1

            averageInhConductanceOfLaterRecruitedBeforeBurstTime.append(
                np.mean(Ginh[nid_later][t < meanFirstSpikeTime + window / 2.]))

        integralConductanceOfAllOther.extend(integralConductanceOfOther)

        f = plt.figure()
        plt.title('Min conductance near burst time of recruited')
        plt.hist(minInhibitionLater,
                 fill=False,
                 edgecolor='r',
                 label='spiked later')
        ylim = plt.ylim()
        plt.vlines(minInhibition, 0, ylim[1])
        plt.legend()
        f.savefig(outFigureDir + simName + "_neuron" + str(nid) +
                  '_min_Ginh.png',
                  bbox_inches='tight')
        plt.close(f)

        f = plt.figure()
        plt.title('Integral of conductance near burst time of recruited')
        plt.hist(integralConductanceOfOther,
                 fill=False,
                 edgecolor='r',
                 label='spiked later')
        ylim = plt.ylim()
        plt.vlines(integralConductanceOfSpiked, 0, ylim[1])
        plt.legend()
        f.savefig(outFigureDir + simName + "_neuron" + str(nid) +
                  '_integral_Ginh.png',
                  bbox_inches='tight')
        plt.close(f)

        f = plt.figure()
        plt.title('Comparison of average conductance before burst time')
        plt.hist(averageInhConductanceOfLaterRecruitedBeforeBurstTime,
                 fill=False,
                 edgecolor='r',
                 label='spiked later')
        ylim = plt.ylim()
        plt.vlines(averageInhConductanceOfRecruitedBeforeBurstTime, 0, ylim[1])
        plt.legend()
        f.savefig(outFigureDir + simName + "_neuron" + str(nid) +
                  '_average_Ginh.png',
                  bbox_inches='tight')
        plt.close(f)

        #plt.figure()
        #plt.hist(integralConductanceOfOther, fill=False, edgecolor='r', label='spiked later')
        #ylim=plt.ylim()
        #plt.vlines(integralConductanceOfSpiked, 0, ylim[1])
        #plt.legend()

        if neuronCounter == 5:
            break
        neuronCounter += 1
コード例 #6
0
def compare_inhibitory_weights(dataDir, outFigureDir, simName, trial):
    """
    Compare inhibitory inputs to network and pool neurons
    """
    N_RA, N_I = reading.read_num_neurons(
        os.path.join(dataDir, "num_neurons.bin"))
    training_neurons = reading.read_training_neurons(
        os.path.join(dataDir, "training_neurons.bin"))
    N_TR = len(training_neurons)

    _, numTestTrials, \
        probability_soma_spike, average_num_soma_spikes_in_trial, mean_first_soma_spike_time, std_first_soma_spike_time,\
        probability_dend_spike, average_num_dend_spikes_in_trial, mean_first_dend_spike_time, std_first_dend_spike_time = reading.read_jitter(os.path.join(testDataDir, "jitter.bin"))

    neuronsWithRobustDendriticSpike = np.where(
        probability_dend_spike >= 0.75)[0]

    # analyze inhibitory weights to neurons
    (_, targets_ID, weights_I2RA, syn_lengths,
     axonal_delays) = reading.read_connections(
         os.path.join(dataDir, "I_RA_connections_" + str(trial) + ".bin"))

    inhibition_weights_on_network_neurons = []
    inhibition_weights_on_pool_neurons = []

    total_inhibition_on_network_neurons = {}
    total_inhibition_on_pool_neurons = {}

    set_neuronsWithRobustDendriticSpike = set(neuronsWithRobustDendriticSpike)

    for i in range(N_I):
        for j, target in enumerate(targets_ID[i]):
            if target not in training_neurons:
                if target in set_neuronsWithRobustDendriticSpike:
                    if target in total_inhibition_on_network_neurons:
                        total_inhibition_on_network_neurons[
                            target] += weights_I2RA[i][j]
                    else:
                        total_inhibition_on_network_neurons[
                            target] = weights_I2RA[i][j]

                    inhibition_weights_on_network_neurons.append(
                        weights_I2RA[i][j])
                else:
                    if target in total_inhibition_on_pool_neurons:
                        total_inhibition_on_pool_neurons[
                            target] += weights_I2RA[i][j]
                    else:
                        total_inhibition_on_pool_neurons[
                            target] = weights_I2RA[i][j]
                    inhibition_weights_on_pool_neurons.append(
                        weights_I2RA[i][j])

    totalInhId, totalInhW = total_inhibition_on_network_neurons.keys(
    ), total_inhibition_on_network_neurons.values()

    f = plt.figure()
    plt.scatter(mean_first_soma_spike_time[totalInhId], totalInhW)
    plt.xlabel('Mean first spike time (ms)')
    plt.ylabel('Total inhibitory input (mS/cm^2)')
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_total_Ginh_vs_burstTime.png',
              bbox_inches='tight')
    plt.close(f)

    nbin = 20
    hist_on_network, bin_edges_on_network = np.histogram(
        inhibition_weights_on_network_neurons, bins=nbin)
    hist_on_network = hist_on_network.astype(float) / float(
        len(neuronsWithRobustDendriticSpike) - N_TR)
    bin_centers_on_network = bin_edges_on_network[:-1:1] + bin_edges_on_network[
        1] - bin_edges_on_network[0]

    hist_on_pool, bin_edges_on_pool = np.histogram(
        inhibition_weights_on_pool_neurons, bins=nbin)
    hist_on_pool = hist_on_pool.astype(float) / float(
        N_RA - len(neuronsWithRobustDendriticSpike))
    bin_centers_on_pool = bin_edges_on_pool[:-1:1] + bin_edges_on_pool[
        1] - bin_edges_on_pool[0]

    f = plt.figure()
    plt.xlabel('Inhibitory input weight (mS/cm^2)')
    plt.ylabel('# of inputs per neuron')
    #plt.hist( , fill=False, label='network neurons', edgecolor='r')
    #plt.hist(np.array(inhibition_weights_on_pool_neurons) / float(N_RA - len(neuronsWithRobustDendriticSpike) - N_TR), fill=False, label='pool neurons', edgecolor='b')
    plt.bar(bin_centers_on_network,
            hist_on_network,
            align='center',
            fill=False,
            edgecolor='b',
            width=bin_edges_on_network[1] - bin_edges_on_network[0],
            label='network neurons')
    plt.bar(bin_centers_on_pool,
            hist_on_pool,
            align='center',
            fill=False,
            edgecolor='r',
            width=bin_edges_on_pool[1] - bin_edges_on_pool[0],
            label='pool neurons')
    plt.legend(loc=4)
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_Ginh_weights_comparison.png',
              bbox_inches='tight')
    plt.close(f)

    nbin = 20
    hist_on_network_total, bin_edges_on_network_total = np.histogram(
        total_inhibition_on_network_neurons.values(), bins=nbin)
    hist_on_network_total = hist_on_network_total.astype(float) / float(
        len(neuronsWithRobustDendriticSpike) - N_TR)
    bin_centers_on_network_total = bin_edges_on_network_total[:-1:1] + bin_edges_on_network_total[
        1] - bin_edges_on_network_total[0]

    hist_on_pool_total, bin_edges_on_pool_total = np.histogram(
        total_inhibition_on_pool_neurons.values(), bins=nbin)
    hist_on_pool_total = hist_on_pool_total.astype(float) / float(
        N_RA - len(neuronsWithRobustDendriticSpike))
    bin_centers_on_pool_total = bin_edges_on_pool_total[:-1:1] + bin_edges_on_pool_total[
        1] - bin_edges_on_pool_total[0]

    f = plt.figure()
    plt.xlabel('Total inhibitory input weight (mS/cm^2)')
    plt.ylabel('Norm. # of neurons')
    #plt.hist( , fill=False, label='network neurons', edgecolor='r')
    #plt.hist(np.array(inhibition_weights_on_pool_neurons) / float(N_RA - len(neuronsWithRobustDendriticSpike) - N_TR), fill=False, label='pool neurons', edgecolor='b')
    plt.bar(bin_centers_on_network_total,
            hist_on_network_total,
            align='center',
            fill=False,
            edgecolor='b',
            width=bin_edges_on_network_total[1] -
            bin_edges_on_network_total[0],
            label='network neurons')
    plt.bar(bin_centers_on_pool_total,
            hist_on_pool_total,
            align='center',
            fill=False,
            edgecolor='r',
            width=bin_edges_on_pool_total[1] - bin_edges_on_pool_total[0],
            label='pool neurons')
    plt.legend(loc=1)
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_total_Ginh_comparison.png',
              bbox_inches='tight')
    plt.close(f)

    f = plt.figure()
    plt.bar([1, 2], [
        np.mean(total_inhibition_on_pool_neurons.values()),
        np.mean(total_inhibition_on_network_neurons.values())
    ],
            align='center',
            width=0.1,
            yerr=[
                np.std(total_inhibition_on_pool_neurons.values()) /
                np.sqrt(float(N_RA - len(neuronsWithRobustDendriticSpike))),
                np.std(total_inhibition_on_network_neurons.values()) /
                np.sqrt(float(len(neuronsWithRobustDendriticSpike) - N_TR))
            ])
    plt.xticks([1, 2], ['pool', 'network'])
    plt.ylabel('Mean inhibitory input (mS/cm^2)')
    f.savefig(outFigureDir + simName + "_trial" + str(trial) +
              '_mean_Ginh_comparison.png',
              bbox_inches='tight')
    plt.close(f)

    from scipy.stats import ranksums
    print ranksums(total_inhibition_on_pool_neurons.values(),
                   total_inhibition_on_network_neurons.values())

    plt.show()