seen = 0 totloss = 0 totacc = 0 apseen = 0 totobjAP = 0 totactAP = 0 progbar = Progbar(target=len(indtrain)) for i in range(len(indtrain)): # pdb.set_trace() # if not os.path.isfile(os.path.join(jsonpath,str(indtrain[i])+'.json')): # print('no file exist') # continue start = time.time() # print('get DB from json files') X_train, act_label, obj_label = readjson.getDB(ind=indtrain[i]) # y_train = readjson.to_categorical_dual(y_train,10) endread = time.time() if isGraph: model.fit({'input1':X_train,'actout':act_label,'objout':obj_label},batch_size=128,\ nb_epoch=1,shuffle=False,verbose=0,callbacks=[MPLC]) else: # print('model fit') model.fit(X_train,act_label,batch_size=128,nb_epoch=1,show_accuracy=True,shuffle=False,\ verbose=0,callbacks=[MPLC]) endfit = time.time() # pdb.set_trace()
totlen = len(indtrain) for i in range(totlen): if i%50 == 0: print('cur ' +str(i)) if i%1000 == 0: f = open(savefold+str(i)+'.pkl.gz','w') tofile.append(trainall) tofile.append(actall) tofile.append(objall) cPickle.dump(tofile,f) f.close() tofile = [] trainall = [] actall = [] objall = [] X_train, act_label, obj_label = readjson.getDB(jsonpath=jsonpath,ind=indtrain[i]) # pdb.set_trace() X_train = normalized(X_train) trainall.append(X_train) # at here, all labels are same. should it be appended? actall.append(act_label) objall.append(obj_label) # f = open('vals.pkl.gz','w') f = open(savefold+str(totlen)+'.pkl.gz','w') tofile.append(trainall) tofile.append(actall) tofile.append(objall) cPickle.dump(tofile,f) f.close() tofile = []