def micro_annotate_search(sourceFile): flag = False counter = 0 tempData = [] output = [] quemican = deque ARRAY_TUPLED = namedtuple('ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT DUMMY ANNOT') #change this for OJ's data, add one element before ANNOT print('start to re-annotate') print('Please waiting! ....') with open(sourceFile) as objectFile: for line in objectFile: dataread = line.split() ori_data = [float(x) for x in dataread[:len(dataread)]] data = ARRAY_TUPLED(*ori_data) if data.ANNOT in FALL_SET: #change this for OJ's data tempData.append(data) if flag == False: flag = True elif (flag is True) and (data.ANNOT not in FALL_SET) : micanDat = searchmax.micAn(tempData) #search for maximum value for x in range(len(micanDat)): output.append(micanDat[x]) flag = False tempData = [] output.append(reannotright.reanotright(data)) else: saveData = reannotright.reanotright(data) output.append(saveData) #write_csv(destFile, output) return output print('finish')
def micro_annotate_search(sourceFile): flag = False counter = 0 tempData = [] output = [] quemican = deque ARRAY_TUPLED = namedtuple( 'ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT ANNOT') print('start to re-annotate') with open(sourceFile) as objectFile: for line in objectFile: dataread = line.split() ori_data = [float(x) for x in dataread[:len(dataread)]] data = ARRAY_TUPLED(*ori_data) if data.ANNOT in FALL_SET: #change this for OJ's data tempData.append(data) if not flag: flag = True elif flag and (data.ANNOT not in FALL_SET): micanDat = searchmax.micAn(tempData) #search for maximum value for x in range(len(micanDat)): output.append(micanDat[x]) flag = False tempData = [] output.append(reannotright.reanotright(data)) else: saveData = reannotright.reanotright(data) output.append(saveData) #write_csv(destFile, output) return output
def micro_test(self): targetList = [[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,0],[0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0]] sourceList = [0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0] resultList = reannotright.reanotright(sourceList) for i in range(len(targetList)): for j in range(len(targetList[0])): self.assertAlmostEqual(targetList[i][j],resultList[i][j])
def micro_nonfall_test(self): """micro_nonfall_test: this test is used to check the micro-annotation fucntion for non-fall activities""" targetList = [[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,0],[0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0]] sourceList = [0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0] resultList = reannotright.reanotright(sourceList) for i in range(len(targetList)): for j in range(len(targetList[0])): self.assertAlmostEqual(targetList[i][j],resultList[i][j])