コード例 #1
0
ファイル: problem.py プロジェクト: tasha-urbancic/rebound
def simulation(par):
    saturn_a, saturn_e = par
    rebound.reset()
    rebound.set_integrator("whfast-nocor")
    rebound.set_dt(5.)
    
    # These parameters are only approximately those of Jupiter and Saturn.
    rebound.add_particle(m=1.)
    rebound.add_particle(m=0.000954, a=5.204, anom=0.600, omega=0.257, e=0.048)
    rebound.add_particle(m=0.000285, a=saturn_a, anom=0.871, omega=1.616, e=saturn_e)

    rebound.move_to_center_of_momentum()
    rebound.init_megno(1e-16)
    rebound.integrate(5e2*2.*np.pi) # integrator for 500 years

    return [rebound.get_megno(),1./(rebound.get_lyapunov()*2.*np.pi)] # returns MEGNO and Lypunov timescale in years
コード例 #2
0
ファイル: problem.py プロジェクト: dsspiegel/rebound
def simulation(par):
    saturn_a, saturn_e = par
    rebound.reset()
    rebound.set_min_dt(0.1)
    
    # These parameters are only approximately those of Jupiter and Saturn.
    sun     = rebound.Particle(m=1.)
    rebound.particle_add(sun)
    jupiter = rebound.particle_add(primary=sun,m=0.000954, a=5.204, anom=0.600, omega=0.257, e=0.048)
    saturn  = rebound.particle_add(primary=sun,m=0.000285, a=saturn_a, anom=0.871, omega=1.616, e=saturn_e)

    rebound.move_to_center_of_momentum()
    rebound.megno_init(1e-16)
    rebound.integrate(1e4*2.*np.pi)

    return [rebound.get_megno(),1./(rebound.get_lyapunov()*2.*np.pi)] # returns MEGNO and Lypunov timescale in years
コード例 #3
0
ファイル: problem.py プロジェクト: tasha-urbancic/rebound
 def energy():
     if integrator=="wh":
         rebound.move_to_center_of_momentum()
     particles = rebound.get_particles()
     E_kin = 0.
     E_pot = 0.
     for i in xrange(N):
         E_kin += 0.5*particles[i].m*(particles[i].vx*particles[i].vx + particles[i].vy*particles[i].vy + particles[i].vz*particles[i].vz)
         for j in xrange(i+1,N):
             dx = particles[i].x-particles[j].x
             dy = particles[i].y-particles[j].y
             dz = particles[i].z-particles[j].z
             r2 = dx*dx + dy*dy + dz*dz
             E_pot -= G*particles[i].m*particles[j].m/np.sqrt(r2)
     if integrator=="wh":
         move_to_heliocentric()
     return E_kin+E_pot
コード例 #4
0
ファイル: problem.py プロジェクト: tasha-urbancic/rebound
def simulation(integrator):
    print("Running "+integrator)
    with open(integrator+".txt","w") as f:
        rebound.reset()
        rebound.set_integrator(integrator)
        rebound.set_dt(0.2)
            
        rebound.add_particle(m=1.)
        rebound.add_particle(m=0.01, a=1,e=0.1)
        rebound.add_particle(m=0.01, a=2.)

        rebound.move_to_center_of_momentum()
        rebound.init_megno(1e-10)
        particles = rebound.get_particles()
        times = np.logspace(2,5,num=1000)
        for t in times:
            rebound.integrate(t,0)
            print("%e %e %e %e %e %e %e %e\n" %(rebound.get_t(), rebound.get_megno(), particles[0].x, particles[1].x, particles[2].x, particles[3].x, particles[4].x, particles[5].x),file=f)
コード例 #5
0
ファイル: problem.py プロジェクト: tasha-urbancic/rebound
def simulation(par):
    integrator = par
    rebound.reset()
    k = 0.01720209895    
    G = k*k
    rebound.set_G(G)     
    rebound.set_dt(dt)
    rebound.set_integrator(integrator)

    rebound.add_particle(m=1.00000597682, x=-4.06428567034226e-3, y=-6.08813756435987e-3, z=-1.66162304225834e-6, vx=+6.69048890636161e-6, vy=-6.33922479583593e-6, vz=-3.13202145590767e-9)   # Sun
    rebound.add_particle(m=1./1047.355,   x=+3.40546614227466e+0, y=+3.62978190075864e+0, z=+3.42386261766577e-2, vx=-5.59797969310664e-3, vy=+5.51815399480116e-3, vz=-2.66711392865591e-6)   # Jupiter
#    rebound.add_particle(m=1./3501.6,     x=+6.60801554403466e+0, y=+6.38084674585064e+0, z=-1.36145963724542e-1, vx=-4.17354020307064e-3, vy=+3.99723751748116e-3, vz=+1.67206320571441e-5)   # Saturn
#    rebound.add_particle(m=1./22869.,     x=+1.11636331405597e+1, y=+1.60373479057256e+1, z=+3.61783279369958e-1, vx=-3.25884806151064e-3, vy=+2.06438412905916e-3, vz=-2.17699042180559e-5)   # Uranus
#    rebound.add_particle(m=1./19314.,     x=-3.01777243405203e+1, y=+1.91155314998064e+0, z=-1.53887595621042e-1, vx=-2.17471785045538e-4, vy=-3.11361111025884e-3, vz=+3.58344705491441e-5)   # Neptune
#    rebound.add_particle(m=0,             x=-2.13858977531573e+1, y=+3.20719104739886e+1, z=+2.49245689556096e+0, vx=-1.76936577252484e-3, vy=-2.06720938381724e-3, vz=+6.58091931493844e-4)   # Pluto
    N = rebound.get_N()

    def move_to_heliocentric():
        particles = rebound.get_particles()
        
        for i in xrange(1,N):
            particles[i].x -= particles[0].x
            particles[i].y -= particles[0].y
            particles[i].z -= particles[0].z
            particles[i].vx -= particles[0].vx
            particles[i].vy -= particles[0].vy
            particles[i].vz -= particles[0].vz
        particles[0].x  = 0.
        particles[0].y  = 0. 
        particles[0].z  = 0. 
        particles[0].vx = 0. 
        particles[0].vy = 0. 
        particles[0].vz = 0. 


    def energy():
        if integrator=="wh":
            rebound.move_to_center_of_momentum()
        particles = rebound.get_particles()
        E_kin = 0.
        E_pot = 0.
        for i in xrange(N):
            E_kin += 0.5*particles[i].m*(particles[i].vx*particles[i].vx + particles[i].vy*particles[i].vy + particles[i].vz*particles[i].vz)
            for j in xrange(i+1,N):
                dx = particles[i].x-particles[j].x
                dy = particles[i].y-particles[j].y
                dz = particles[i].z-particles[j].z
                r2 = dx*dx + dy*dy + dz*dz
                E_pot -= G*particles[i].m*particles[j].m/np.sqrt(r2)
        if integrator=="wh":
            move_to_heliocentric()
        return E_kin+E_pot

    rebound.move_to_center_of_momentum()

    es = []

    ei = energy()
    for time in xrange(Nsteps):
        rebound.step()
        ef = energy()
        e = (ei-ef)
        es.append(e)
        ei = ef

    es = np.array(es)
    print integrator + " done."
    return [es]
コード例 #6
0
ファイル: problem.py プロジェクト: dsspiegel/rebound
# Set variables (defaults are G=1, t=0, dt=0.01)
k = 0.01720209895       # Gaussian constant 
rebound.set_G(k*k)      # Gravitational constant

# Setup particles (data taken from NASA Horizons)
# This could also be easily read in from a file.
rebound.particle_add( Particle( m=1.00000597682, x=-4.06428567034226e-3, y=-6.08813756435987e-3, z=-1.66162304225834e-6, vx=+6.69048890636161e-6, vy=-6.33922479583593e-6, vz=-3.13202145590767e-9) )  # Sun
rebound.particle_add( Particle( m=1./1047.355,   x=+3.40546614227466e+0, y=+3.62978190075864e+0, z=+3.42386261766577e-2, vx=-5.59797969310664e-3, vy=+5.51815399480116e-3, vz=-2.66711392865591e-6) )  # Jupiter
rebound.particle_add( Particle( m=1./3501.6,     x=+6.60801554403466e+0, y=+6.38084674585064e+0, z=-1.36145963724542e-1, vx=-4.17354020307064e-3, vy=+3.99723751748116e-3, vz=+1.67206320571441e-5) )  # Saturn
rebound.particle_add( Particle( m=1./22869.,     x=+1.11636331405597e+1, y=+1.60373479057256e+1, z=+3.61783279369958e-1, vx=-3.25884806151064e-3, vy=+2.06438412905916e-3, vz=-2.17699042180559e-5) )  # Uranus
rebound.particle_add( Particle( m=1./19314.,     x=-3.01777243405203e+1, y=+1.91155314998064e+0, z=-1.53887595621042e-1, vx=-2.17471785045538e-4, vy=-3.11361111025884e-3, vz=+3.58344705491441e-5) )  # Neptune
rebound.particle_add( Particle( m=0,             x=-2.13858977531573e+1, y=+3.20719104739886e+1, z=+2.49245689556096e+0, vx=-1.76936577252484e-3, vy=-2.06720938381724e-3, vz=+6.58091931493844e-4) )  # Pluto

# Set the center of momentum to be at the origin
rebound.move_to_center_of_momentum()

# Get the particle data
# Note: this is a pointer and will automatically update as the simulation progresses
particles = rebound.particles_get()
# timestep counter
steps = 0 
# Integrate until t=1e6 (unit of time in this example is days)
while rebound.get_t()<1e6:
    rebound.step()
    steps += 1
    # Print particle positions every 100 timesteps
    if steps%100==0:
        for i in range(rebound.get_N()):
            #     time             particle id   x               y               z 
            print rebound.get_t(), i,            particles[i].x, particles[i].y, particles[i].z
コード例 #7
0
ファイル: problem.py プロジェクト: tasha-urbancic/rebound
def simulation(par):
    integrator, run, trial = par
    rebound.reset()
    k = 0.01720209895    
    Gfac = 1./k
    rebound.set_dt(dt)
    rebound.set_integrator(integrator)
    rebound.set_force_is_velocitydependent(0)

    massfac = 1.
    rebound.add_particle(m=1.00000597682, x=-4.06428567034226e-3, y=-6.08813756435987e-3, z=-1.66162304225834e-6,      vx=+6.69048890636161e-6*Gfac, vy=-6.33922479583593e-6*Gfac, vz=-3.13202145590767e-9*Gfac)   # Sun
    rebound.add_particle(m=massfac/1407.355,   x=+3.40546614227466e+0, y=+3.62978190075864e+0, z=+3.42386261766577e-2, vx=-5.59797969310664e-3*Gfac, vy=+5.51815399480116e-3*Gfac, vz=-2.66711392865591e-6*Gfac)   # Jupiter
    rebound.add_particle(m=massfac/3501.6,     x=+6.60801554403466e+0, y=+6.38084674585064e+0, z=-1.36145963724542e-1, vx=-4.17354020307064e-3*Gfac, vy=+3.99723751748116e-3*Gfac, vz=+1.67206320571441e-5*Gfac)   # Saturn
    rebound.add_particle(m=massfac/22869.,     x=+1.11636331405597e+1, y=+1.60373479057256e+1, z=+3.61783279369958e-1, vx=-3.25884806151064e-3*Gfac, vy=+2.06438412905916e-3*Gfac, vz=-2.17699042180559e-5*Gfac)   # Uranus
    rebound.add_particle(m=massfac/19314.,     x=-3.01777243405203e+1, y=+1.91155314998064e+0, z=-1.53887595621042e-1, vx=-2.17471785045538e-4*Gfac, vy=-3.11361111025884e-3*Gfac, vz=+3.58344705491441e-5*Gfac)   # Neptune
    N = rebound.get_N()
    particles = rebound.get_particles()
    np.random.seed(run)
    for i in xrange(N):
        particles[i].m *= 1.+1e-3*np.random.rand()
        particles[i].x *= 1.+1e-3*np.random.rand()
        particles[i].y *= 1.+1e-3*np.random.rand()
        particles[i].z *= 1.+1e-3*np.random.rand()
        particles[i].vx *= 1.+1e-3*np.random.rand()
        particles[i].vy *= 1.+1e-3*np.random.rand()
        particles[i].vz *= 1.+1e-3*np.random.rand()

    def move_to_heliocentric():
        particles = rebound.get_particles()
        
        particles[0].x  = 0.
        particles[0].y  = 0. 
        particles[0].z  = 0. 
        particles[0].vx = 0. 
        particles[0].vy = 0. 
        particles[0].vz = 0. 


    def energy():
        particles = rebound.get_particles()
        com_vx = 0.
        com_vy = 0.
        com_vz = 0.
        if integrator=="wh" or integrator=="mercury" or integrator[0:7]=="swifter":
            mtot = 0.
            for i in xrange(0,N):
                com_vx += particles[i].vx*particles[i].m 
                com_vy += particles[i].vy*particles[i].m 
                com_vz += particles[i].vz*particles[i].m 
                mtot += particles[i].m
            com_vx /= mtot
            com_vy /= mtot
            com_vz /= mtot
        E_kin = 0.
        E_pot = 0.
        for i in xrange(N):
            dvx = particles[i].vx - com_vx
            dvy = particles[i].vy - com_vy
            dvz = particles[i].vz - com_vz
            E_kin += 0.5*particles[i].m*(dvx*dvx + dvy*dvy + dvz*dvz)
            for j in xrange(i+1,N):
                dx = particles[i].x-particles[j].x
                dy = particles[i].y-particles[j].y
                dz = particles[i].z-particles[j].z
                r2 = dx*dx + dy*dy + dz*dz
                E_pot -= particles[i].m*particles[j].m/np.sqrt(r2)
        return E_kin+E_pot

    times = np.logspace(np.log10(orbit),np.log10(tmax),Ngrid)
    if integrator=="wh" or integrator=="mercury" or integrator[0:7]=="swifter":
        move_to_heliocentric()
    else:
        rebound.move_to_center_of_momentum()
    ei = energy()

    es = []

    runtime = 0.
    for t in times:
        rebound.integrate(t,exactFinishTime=0,keepSynchronized=0)
        ef = energy()
        e = np.fabs((ei-ef)/ei)+1.1e-16
        es.append(e)
        runtime += rebound.get_timing()
    
    integrator, run, trial = par
    print integrator.ljust(13) + " %9.5fs"%(runtime) + "\t Error: %e"  %( e)
    
    es = np.array(es)
    return [times, es]