def summarize_analysis( *args, **kwargs) -> Tuple[Optional[Sample], Counter[Id], Counter[Id], Scores]: """ Summarize for a cross-analysis (to be usually called in parallel!). """ # Recover input and parameters analysis: str = args[0] ontology: Ontology = kwargs['ontology'] # TODO: Delete the following comment lines in a future release # including = ontology.including # See comment below for the reason # excluding = ontology.excluding # in/excluding are not used anymore counts: Dict[Sample, Counter[Id]] = kwargs['counts'] scores: Dict[Sample, Dict[Id, Score]] = kwargs['scores'] samples: List[Sample] = kwargs['samples'] output: io.StringIO = io.StringIO(newline='') # Declare/define variables summary_counts: Counter[Id] = col.Counter() summary_acc: Counter[Id] = col.Counter() summary_score: Scores = Scores({}) summary: Optional[Sample] = None output.write(gray('Summary for ') + analysis + gray('... ')) target_samples: List[Sample] = [ smpl for smpl in samples if smpl.startswith(analysis) ] assert len(target_samples) >= 1, \ red('ERROR! ') + analysis + gray(' has no samples to summarize!') for smpl in target_samples: summary_counts += counts[smpl] summary_score.update(scores[smpl]) tree = TaxTree() tree.grow(ontology=ontology, counts=summary_counts, scores=summary_score) tree.subtract() tree.shape() summary_counts.clear() summary_score.clear() # Avoid including/excluding here as get_taxa is not as 'clever' as allin1 # and taxa are already included/excluded in the derived samples tree.get_taxa(counts=summary_counts, accs=summary_acc, scores=summary_score) summary_counts = +summary_counts # remove counts <= 0 if summary_counts: # Avoid returning empty sample (summary would be None) summary = Sample(f'{analysis}_{STR_SUMMARY}') output.write( gray('(') + cyan(f'{len(target_samples)}') + gray(' samples)') + green(' OK!\n')) else: output.write(yellow(' VOID\n')) # Print output and return print(output.getvalue(), end='') sys.stdout.flush() return summary, summary_counts, summary_acc, summary_score
def summarize_analysis( *args, **kwargs) -> Tuple[Sample, Counter[Id], Counter[Id], Scores]: """ Summarize for a cross-analysis (to be usually called in parallel!). """ # Recover input and parameters analysis: str = args[0] ontology: Ontology = kwargs['ontology'] including = ontology.including excluding = ontology.excluding counts: Dict[Sample, Counter[Id]] = kwargs['counts'] scores: Dict[Sample, Dict[Id, Score]] = kwargs['scores'] samples: List[Sample] = kwargs['samples'] output: io.StringIO = io.StringIO(newline='') # Declare/define variables summary_counts: Counter[Id] = Counter() summary_acc: Counter[Id] = Counter() summary_score: Scores = Scores({}) summary: Sample = None output.write(gray('Summary for ') + analysis + gray('... ')) target_samples: List[Sample] = [ smpl for smpl in samples if smpl.startswith(analysis) ] assert len(target_samples) >= 1, \ red('ERROR! ') + analysis + gray(' has no samples to summarize!') for smpl in target_samples: summary_counts += counts[smpl] summary_score.update(scores[smpl]) tree = TaxTree() tree.grow(ontology=ontology, counts=summary_counts, scores=summary_score) tree.subtract() tree.shape() summary_counts.clear() summary_score.clear() tree.get_taxa(counts=summary_counts, accs=summary_acc, scores=summary_score, include=including, exclude=excluding) summary_counts = +summary_counts # remove counts <= 0 if summary_counts: # Avoid returning empty sample (summary would be None) summary = Sample(f'{analysis}_{STR_SUMMARY}') output.write( gray('(') + cyan(f'{len(target_samples)}') + gray(' samples)') + green(' OK!\n')) else: output.write(yellow(' VOID\n')) # Print output and return print(output.getvalue(), end='') sys.stdout.flush() return summary, summary_counts, summary_acc, summary_score
def main(): """Main entry point to script.""" # Argument Parser Configuration parser = argparse.ArgumentParser( description='Extract reads following Centrifuge/Kraken output', epilog=f'%(prog)s - {__author__} - {__date__}') parser.add_argument('-V', '--version', action='version', version=f'%(prog)s release {__version__} ({__date__})') parser.add_argument('-f', '--file', action='store', metavar='FILE', required=True, help='Centrifuge output file.') parser.add_argument('-l', '--limit', action='store', metavar='NUMBER', type=int, default=None, help=('Limit of FASTQ reads to extract. ' 'Default: no limit')) parser.add_argument( '-m', '--maxreads', action='store', metavar='NUMBER', type=int, default=None, help=('Maximum number of FASTQ reads to search for the taxa. ' 'Default: no maximum')) parser.add_argument( '-n', '--nodespath', action='store', metavar='PATH', default=TAXDUMP_PATH, help=('path for the nodes information files (nodes.dmp and names.dmp' + ' from NCBI')) parser.add_argument( '-i', '--include', action='append', metavar='TAXID', type=TaxId, default=[], help=('NCBI taxid code to include a taxon and all underneath ' + '(multiple -i is available to include several taxid). ' + 'By default all the taxa is considered for inclusion.')) parser.add_argument( '-x', '--exclude', action='append', metavar='TAXID', type=TaxId, default=[], help=('NCBI taxid code to exclude a taxon and all underneath ' + '(multiple -x is available to exclude several taxid)')) parser.add_argument( '-y', '--minscore', action='store', metavar='NUMBER', type=lambda txt: Score(float(txt)), default=None, help=('minimum score/confidence of the classification of a read ' 'to pass the quality filter; all pass by default')) filein = parser.add_mutually_exclusive_group(required=True) filein.add_argument('-q', '--fastq', action='store', metavar='FILE', default=None, help='Single FASTQ file (no paired-ends)') filein.add_argument('-1', '--mate1', action='store', metavar='FILE', default=None, help='Paired-ends FASTQ file for mate 1s ' '(filename usually includes _1)') parser.add_argument('-2', '--mate2', action='store', metavar='FILE', default=None, help='Paired-ends FASTQ file for mate 2s ' '(filename usually includes _2)') # timing initialization start_time: float = time.time() # Program header print(f'\n=-= {sys.argv[0]} =-= v{__version__} =-= {__date__} =-=\n') sys.stdout.flush() # Parse arguments args = parser.parse_args() output_file = args.file nodesfile: Filename = Filename(os.path.join(args.nodespath, NODES_FILE)) namesfile: Filename = Filename(os.path.join(args.nodespath, NAMES_FILE)) excluding: Set[TaxId] = set(args.exclude) including: Set[TaxId] = set(args.include) fastq_1: Filename fastq_2: Filename = args.mate2 if not fastq_2: fastq_1 = args.fastq else: fastq_1 = args.mate1 # Load NCBI nodes, names and build children plasmidfile: Filename = None ncbi: Taxonomy = Taxonomy(nodesfile, namesfile, plasmidfile, False, excluding, including) # Build taxonomy tree print(gray('Building taxonomy tree...'), end='') sys.stdout.flush() tree = TaxTree() tree.grow(taxonomy=ncbi, look_ancestors=False) print(green(' OK!')) # Get the taxa print(gray('Filtering taxa...'), end='') sys.stdout.flush() ranks: Ranks = Ranks({}) tree.get_taxa(ranks=ranks, include=including, exclude=excluding) print(green(' OK!')) taxids: Set[TaxId] = set(ranks) taxlevels: TaxLevels = Rank.ranks_to_taxlevels(ranks) num_taxlevels = Counter({rank: len(taxlevels[rank]) for rank in taxlevels}) num_taxlevels = +num_taxlevels # Statistics about including taxa print(f' {len(taxids)}\033[90m taxid selected in \033[0m', end='') print(f'{len(num_taxlevels)}\033[90m different taxonomical levels:\033[0m') for rank in num_taxlevels: print(f' Number of different {rank}: {num_taxlevels[rank]}') assert taxids, red('ERROR! No taxids to search for!') # Get the records records: List[SeqRecord] = [] num_seqs: int = 0 # timing initialization start_time_load: float = time.perf_counter() print(gray(f'Loading output file {output_file}...'), end='') sys.stdout.flush() try: with open(output_file, 'rU') as file: file.readline() # discard header for num_seqs, record in enumerate(SeqIO.parse(file, 'centrifuge')): tid: TaxId = record.annotations['taxID'] if tid not in taxids: continue # Ignore read if low confidence score: Score = Score(record.annotations['score']) if args.minscore is not None and score < args.minscore: continue records.append(record) except FileNotFoundError: raise Exception(red('ERROR!') + 'Cannot read "' + output_file + '"') print(green(' OK!')) # Basic records statistics print( gray(' Load elapsed time: ') + f'{time.perf_counter() - start_time_load:.3g}' + gray(' sec')) print(f' \033[90mMatching reads: \033[0m{len(records):_d} \033[90m\t' f'(\033[0m{len(records)/num_seqs:.4%}\033[90m of sample)') sys.stdout.flush() # FASTQ sequence dealing # records_ids: List[SeqRecord] = [record.id for record in records] records_ids: Set[SeqRecord] = {record.id for record in records} seqs1: List[SeqRecord] = [] seqs2: List[SeqRecord] = [] extracted: int = 0 i: int = 0 if fastq_2: print( f'\033[90mLoading FASTQ files {fastq_1} and {fastq_2}...\n' f'Mseqs: \033[0m', end='') sys.stdout.flush() try: with open(fastq_1, 'rU') as file1, open(fastq_2, 'rU') as file2: for i, (rec1, rec2) in enumerate( zip(SeqIO.parse(file1, 'quickfastq'), SeqIO.parse(file2, 'quickfastq'))): if not records_ids or (args.maxreads and i >= args.maxreads ) or (args.limit and extracted >= args.limit): break elif not i % 1000000: print(f'{i//1000000:_d}', end='') sys.stdout.flush() elif not i % 100000: print('.', end='') sys.stdout.flush() try: records_ids.remove(rec1.id) except KeyError: pass else: seqs1.append(rec1) seqs2.append(rec2) extracted += 1 except FileNotFoundError: raise Exception('\n\033[91mERROR!\033[0m Cannot read FASTQ files') else: print(f'\033[90mLoading FASTQ files {fastq_1}...\n' f'Mseqs: \033[0m', end='') sys.stdout.flush() try: with open(fastq_1, 'rU') as file1: for i, rec1 in enumerate(SeqIO.parse(file1, 'quickfastq')): if not records_ids or (args.maxreads and i >= args.maxreads ) or (args.limit and extracted >= args.limit): break elif not i % 1000000: print(f'{i//1000000:_d}', end='') sys.stdout.flush() elif not i % 100000: print('.', end='') sys.stdout.flush() try: records_ids.remove(rec1.id) except KeyError: pass else: seqs1.append(rec1) extracted += 1 except FileNotFoundError: raise Exception('\n\033[91mERROR!\033[0m Cannot read FASTQ file') print(cyan(f' {i/1e+6:.3g} Mseqs'), green('OK! ')) def format_filename(fastq: Filename) -> Filename: """Auxiliary function to properly format the output filenames. Args: fastq: Complete filename of the fastq input file Returns: Filename of the rextracted fastq output file """ fastq_filename, _ = os.path.splitext(fastq) output_list: List[str] = [fastq_filename, '_rxtr'] if including: output_list.append('_incl') output_list.extend('_'.join(including)) if excluding: output_list.append('_excl') output_list.extend('_'.join(excluding)) output_list.append('.fastq') return Filename(''.join(output_list)) filename1: Filename = format_filename(fastq_1) SeqIO.write(seqs1, filename1, 'quickfastq') print(gray('Wrote'), magenta(f'{len(seqs1)}'), gray('reads in'), filename1) if fastq_2: filename2: Filename = format_filename(fastq_2) SeqIO.write(seqs2, filename2, 'quickfastq') print(gray('Wrote'), magenta(f'{len(seqs1)}'), gray('reads in'), filename2) # Timing results print(gray('Total elapsed time:'), time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)))
def process_report( *args, **kwargs ) -> Tuple[Sample, TaxTree, SampleDataByTaxId, SampleStats, Err]: """ Process Centrifuge/Kraken report files (to be usually called in parallel!). """ # TODO: Full review to report support # Recover input and parameters filerep: Filename = args[0] taxonomy: Taxonomy = kwargs['taxonomy'] mintaxa: int = kwargs['mintaxa'] collapse: bool = taxonomy.collapse including: Set[TaxId] = taxonomy.including excluding: Set[TaxId] = taxonomy.excluding debug: bool = kwargs['debug'] output: io.StringIO = io.StringIO(newline='') def vwrite(*args): """Print only if verbose/debug mode is enabled""" if kwargs['debug']: output.write(' '.join(str(item) for item in args)) sample: Sample = Sample(filerep) # Read Centrifuge/Kraken report file to get abundances log: str abundances: Counter[TaxId] log, abundances, _ = read_report(filerep) output.write(log) # Remove root counts, in case if kwargs['root']: vwrite(gray('Removing'), abundances[ROOT], gray('"ROOT" reads... ')) abundances[ROOT] = 0 vwrite(green('OK!'), '\n') # Build taxonomy tree output.write(' \033[90mBuilding taxonomy tree...\033[0m') tree = TaxTree() tree.grow(taxonomy=taxonomy, counts=abundances) # Grow tax tree from root node output.write('\033[92m OK! \033[0m\n') # Prune the tree output.write(' \033[90mPruning taxonomy tree...\033[0m') tree.prune(mintaxa, None, collapse, debug) tree.shape() output.write('\033[92m OK! \033[0m\n') # Get the taxa with their abundances and taxonomical levels output.write(' \033[90mFiltering taxa...\033[0m') new_abund: Counter[TaxId] = col.Counter() new_accs: Counter[TaxId] = col.Counter() ranks: Ranks = Ranks({}) tree.get_taxa(abundance=new_abund, accs=new_accs, ranks=ranks, mindepth=0, maxdepth=0, include=including, exclude=excluding) new_abund = +new_abund # remove zero and negative counts if including or excluding: # Recalculate accumulated counts new_tree = TaxTree() new_tree.grow(taxonomy, new_abund) # Grow tree with new abund new_tree.shape() new_abund = col.Counter() # Reset abundances new_accs = col.Counter() # Reset accumulated new_tree.get_taxa(new_abund, new_accs) # Get new accumulated counts out: SampleDataByTaxId = SampleDataByTaxId() out.set(counts=new_abund, ranks=ranks, accs=new_accs) output.write('\033[92m OK! \033[0m\n') print(output.getvalue()) sys.stdout.flush() return sample, tree, out, SampleStats(), Err.NO_ERROR