コード例 #1
0
    def plot_gradient_at(
        self,
        fm_id: int,
        point: GridPoint,
        image: Optional[np.ndarray] = None,
        **plot_params,
    ) -> None:
        """
        Plot gradient map generated by certain `point` at selected feature map.

        :param fm_id: an index of feature map for which gradient map
            will be plotted.
        :param point: a GridPoint on feature map selected by fm_id.
        :param image: (optional) image of shape [W, H, 3]
        :param plot_params: (optional) additional plot parameters:
            figsize: tuple of int (5, 5)
            axis: a matplotlib axis object as returned by e.g. plt.subplot
                function. If not None then provided axis is used for
                visualizations otherwise default figure is created, with
                optional figsize.
        """
        points = [GridPoint(0, 0)] * self.num_feature_maps
        points[fm_id] = GridPoint(*point)
        receptive_field_grads = self._get_gradient_from_grid_points(
            points=points)

        plot_gradient_field(
            receptive_field_grad=receptive_field_grads[fm_id],
            image=image,
            **plot_params,
        )
コード例 #2
0
ファイル: base.py プロジェクト: puruBHU/receptivefield
    def compute(self, input_shape: ImageShape, input_layer: str,
                output_layer: str) -> ReceptiveFieldDescription:
        """
        Compute ReceptiveFieldDescription of given model for image of
        shape input_shape [W, H, C]. If receptive field of the network
        is bigger thant input_shape this method will raise exception.
        In order to solve with problem try to increase input_shape.

        :param input_shape: shape of the input image e.g. (224, 224, 3)
        :param input_layer: name of the input layer
        :param output_layer: name of the target layer
        :return: estimated ReceptiveFieldDescription
        """
        # define gradient function
        self.build_gradient_func(input_shape=input_shape,
                                 input_layer=input_layer,
                                 output_layer=output_layer)

        # receptive field at map center
        rf_grad00 = self._get_gradient_activation_at_map_center(
            self.get_gradient_func(),
            self.get_input_shape(),
            self.get_output_shape(),
            center_offset=GridPoint(0, 0))
        rf_at00 = _estimate_rf_from_gradients(rf_grad00)

        # receptive field at map center with offset (1, 1)
        rf_grad11 = self._get_gradient_activation_at_map_center(
            self.get_gradient_func(),
            self.get_input_shape(),
            self.get_output_shape(),
            center_offset=GridPoint(1, 1))
        rf_at11 = _estimate_rf_from_gradients(rf_grad11)

        # receptive field at feature map grid start x=0, y=0
        rf_grad_point00 = self._get_gradient_from_grid_point(
            self.get_gradient_func(),
            self.get_input_shape(),
            self.get_output_shape(),
            point=GridPoint(0, 0))
        rf_at_point00 = _estimate_rf_from_gradients(rf_grad_point00)

        # compute position of the first anchor, center point of rect
        x0 = rf_at_point00.w - rf_at00.w / 2
        y0 = rf_at_point00.h - rf_at00.h / 2

        # compute feature map/input image offsets
        dx = rf_at11.x - rf_at00.x
        dy = rf_at11.y - rf_at00.y

        # compute receptive field size
        size = Size(rf_at00.w, rf_at00.h)

        rf_params = ReceptiveFieldDescription(offset=(x0, y0),
                                              stride=(dx, dy),
                                              size=size)
        self.rf_params = rf_params
        return rf_params
コード例 #3
0
    def compute(self, *args, **kwargs) -> List[FeatureMapDescription]:
        """
        Compute ReceptiveFieldDescription of given model for image of
        shape input_shape [H, W, C]. If receptive field of the network
        is bigger thant input_shape this method will raise exception.
        In order to solve with problem try to increase input_shape.

        :param args: a list of arguments which depend on the API
        :param kwargs: keywords which depend on the API

        :return a list of estimated FeatureMapDescription for each feature
            map.
        """
        # define gradient function
        self._build_gradient_func(*args, **kwargs)

        # receptive field at map center
        rf_grads00 = self._get_gradient_activation_at_map_center(
            center_offsets=[GridPoint(0, 0)] * self.num_feature_maps)
        rfs_at00 = estimate_rf_from_gradients(rf_grads00)

        # receptive field at map center with offset (1, 1)
        rf_grads11 = self._get_gradient_activation_at_map_center(
            center_offsets=[GridPoint(1, 1)] * self.num_feature_maps)
        rfs_at11 = estimate_rf_from_gradients(rf_grads11)

        # receptive field at feature map grid start x=0, y=0
        rf_grads_point00 = self._get_gradient_from_grid_points(
            points=[GridPoint(0, 0)] * self.num_feature_maps)
        rfs_at_point00 = estimate_rf_from_gradients(rf_grads_point00)

        self._rf_params = []

        for fm, (rf_at_point00, rf_at00,
                 rf_at11) in enumerate(zip(rfs_at_point00, rfs_at00,
                                           rfs_at11)):
            # compute position of the first anchor, center point of rect
            x0 = rf_at_point00.w - rf_at00.w / 2
            y0 = rf_at_point00.h - rf_at00.h / 2

            # compute feature map/input image offsets
            dx = rf_at11.x - rf_at00.x
            dy = rf_at11.y - rf_at00.y

            # compute receptive field size
            size = Size(rf_at00.w, rf_at00.h)

            rf_params = ReceptiveFieldDescription(offset=(x0, y0),
                                                  stride=(dx, dy),
                                                  size=size)

            _logger.info(
                f"Estimated receptive field for feature map [{fm}]: {rf_params}"
            )
            self._rf_params.append(rf_params)

        return self.feature_maps_desc
コード例 #4
0
ファイル: base.py プロジェクト: puruBHU/receptivefield
    def _get_gradient_activation_at_map_center(self,
                                               gradient_function: Callable,
                                               input_shape: GridShape,
                                               output_shape: GridShape,
                                               center_offset: GridPoint,
                                               intensity: float = 1):
        _logger.debug(f"Computing receptive field at center "
                      f"({output_shape.w//2}, {output_shape.h//2}) "
                      f"with offset {center_offset}")

        # compute grid center
        cx = output_shape.w // 2 - 1 \
            if output_shape.w % 2 == 0 else output_shape.w // 2
        cy = output_shape.h // 2 - 1 \
            if output_shape.h % 2 == 0 else output_shape.h // 2

        cx += center_offset.x
        cy += center_offset.y

        return self._get_gradient_from_grid_point(
            gradient_function=gradient_function,
            input_shape=input_shape,
            output_shape=output_shape,
            point=GridPoint(x=cx, y=cy),
            intensity=intensity)
コード例 #5
0
    def _get_gradient_activation_at_map_center(
            self,
            center_offset: GridPoint,
            intensity: float = 1
    ):
        _logger.debug(
            f"Computing receptive field at center "
            f"({self.output_shape.w//2}, {self.output_shape.h//2}) "
            f"with offset {center_offset}")

        # compute grid center
        w = self.output_shape.w
        h = self.output_shape.h
        cx = w // 2 - 1 \
            if w % 2 == 0 else w // 2
        cy = h // 2 - 1 \
            if h % 2 == 0 else h // 2

        cx += center_offset.x
        cy += center_offset.y

        return self._get_gradient_from_grid_point(
            point=GridPoint(x=cx, y=cy),
            intensity=intensity
        )
コード例 #6
0
    def plot_gradients_at(
        self,
        points: List[GridPoint],
        image: Optional[np.ndarray] = None,
        layout: Optional[Tuple[int, int]] = None,
        figsize: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Plot gradient map generated by certain `point` at feature map.

        :param points: a list of  GridPoint on feature maps.
        :param image: (optional) image of shape [W, H, 3]
        :param layout: (optional) a matplotlib subplot layout given by
            tuple of form (num_rows, num_cols). If None the layout is set
            to (num_feature_maps, 1).
        :param figsize: (optional) a matplotlib figsize. If None the default
            figure is used.
        """

        if layout is None:
            layout = (self.num_feature_maps, 1)
        if figsize is not None:
            plt.figure(figsize=figsize)

        receptive_field_grads = self._get_gradient_from_grid_points(
            points=[GridPoint(*point) for point in points])

        for fm in range(self.num_feature_maps):
            axis = plt.subplot(layout[0], layout[1], fm + 1)
            plot_gradient_field(receptive_field_grad=receptive_field_grads[fm],
                                image=image,
                                axis=axis)
コード例 #7
0
    def _get_gradient_activation_at_map_center(
            self,
            center_offsets: List[GridPoint],
            intensity: float = 1) -> List[np.ndarray]:
        points = []
        for fm in range(self.num_feature_maps):
            output_shape = self._output_shapes[fm]
            center_offset = center_offsets[fm]

            _logger.debug(
                f"Computing receptive field for feature map [{fm}] at center "
                f"({output_shape.w//2}, {output_shape.h//2}) "
                f"with offset {center_offset}")

            # compute grid center
            w = output_shape.w
            h = output_shape.h
            cx = w // 2 - 1 if w % 2 == 0 else w // 2
            cy = h // 2 - 1 if h % 2 == 0 else h // 2

            cx += center_offset.x
            cy += center_offset.y
            points.append(GridPoint(x=cx, y=cy))
        return self._get_gradient_from_grid_points(points=points,
                                                   intensity=intensity)
コード例 #8
0
ファイル: base.py プロジェクト: puruBHU/receptivefield
    def plot_gradient_at(self,
                         point: GridPoint,
                         image: np.ndarray = None,
                         **plot_params):
        receptive_field_grad = self._get_gradient_from_grid_point(
            self.get_gradient_func(),
            self.get_input_shape(),
            self.get_output_shape(),
            point=GridPoint(*point))

        plot_gradient_field(receptive_field_grad=receptive_field_grad,
                            image=image,
                            **plot_params)
コード例 #9
0
def plot_receptive_grid(input_shape: GridShape,
                        output_shape: GridShape,
                        rf_params: ReceptiveFieldDescription,
                        custom_image: Optional[np.ndarray] = None,
                        plot_naive_rf: bool = False,
                        axis: Optional[Any] = None,
                        **plot_params) -> None:
    """
    Visualize receptive field grid.

    :param input_shape: an input image shape as an instance of GridShape
    :param output_shape: an output feature map shape
    :param rf_params: an instance of ReceptiveFieldDescription computed for
        this feature map.
    :param custom_image: optional image [height, width, 3] to be plotted as
        a background.
    :param plot_naive_rf: plot naive version of the receptive field. Naive
        version of RF does not take strides, and offsets into considerations,
        it is a simple linear mapping from N points in feature map to pixels
        in the image.
    :param axis: a matplotlib axis object as returned by the e.g. plt.subplot
        function. If not None then axis is used for visualizations otherwise
        default figure is created.
    :param plot_params: additional plot params: figsize=(5, 5)
    """
    if custom_image is None:
        img = get_default_image(shape=ImageShape(input_shape.h, input_shape.w))
    else:
        img = custom_image

    figsize = plot_params.get("figsize", (10, 10))

    # plot image
    if axis is None:
        plt.figure(figsize=figsize)
        axis = plt.subplot(111)

    axis.imshow(img)
    # plot naive receptive field grid
    if plot_naive_rf:
        dw = input_shape.w / output_shape.w
        dh = input_shape.h / output_shape.h
        for i, j in itertools.product(range(output_shape.w),
                                      range(output_shape.h)):
            x0, x1 = i * dw, (i + 1) * dw
            y0, y1 = j * dh, (j + 1) * dh

            axis.add_patch(
                patches.Rectangle(
                    (y0, x0),
                    dh,
                    dw,
                    alpha=0.9,
                    fill=False,
                    edgecolor="gray",
                    linewidth=1,
                ))

    rf_offset = rf_params.offset
    rf_size = rf_params.size
    rf_stride = rf_params.stride

    # map from output grid space to input image
    def map_point(i: int, j: int):
        return np.array(rf_offset) + np.array([i, j]) * np.array(rf_stride)

    # plot RF grid based on rf params
    '''
    points = [
        map_point(i, j)
        for i, j in itertools.product(range(output_shape.w), range(output_shape.h))
    ]

    points = np.array(points)
    axis.scatter(points[:, 1], points[:, 0], marker="o", c=(0.2, 0.9, 0.1, 0.9), s=10)
    '''

    # plot receptive field from corner point
    _plot_rect(
        axis,
        rect=to_rf_rect(rf_offset, rf_size),
        color=(0.9, 0.3, 0.2),
        linewidth=2,
        size=10,
    )
    center_point = map_point(output_shape.w // 2, output_shape.h // 2)
    _plot_rect(
        axis,
        rect=to_rf_rect(GridPoint(center_point[0], center_point[1]), rf_size),
        color=(0.1, 0.3, 0.9),
        linewidth=2,
        size=10,
    )
    last_point = map_point(output_shape.w - 1, output_shape.h - 1)
    _plot_rect(
        axis,
        rect=to_rf_rect(GridPoint(last_point[0], last_point[1]), rf_size),
        color=(0.1, 0.9, 0.3),
        linewidth=2,
        size=10,
    )
    axis.set_aspect("equal")
コード例 #10
0
ファイル: plotting.py プロジェクト: zxyang521/receptivefield
def plot_receptive_grid(input_shape: GridShape,
                        output_shape: GridShape,
                        rf_params: ReceptiveFieldDescription,
                        custom_image: np.ndarray = None,
                        plot_naive_rf: bool = False,
                        **plot_params) -> None:

    if custom_image is None:
        img = get_default_image(shape=ImageShape(input_shape.h, input_shape.w))
    else:
        img = custom_image

    figsize = plot_params.get("figsize", (10, 10))

    # plot image
    plt.figure(figsize=figsize)
    ax = plt.subplot(111)
    plt.imshow(img)

    # plot naive receptive field grid
    if plot_naive_rf:
        dw = input_shape.w / output_shape.w
        dh = input_shape.h / output_shape.h
        for i, j in itertools.product(range(output_shape.w),
                                      range(output_shape.h)):
            x0, x1 = i * dw, (i + 1) * dw
            y0, y1 = j * dh, (j + 1) * dh

            ax.add_patch(
                patches.Rectangle((y0, x0),
                                  dh,
                                  dw,
                                  alpha=0.9,
                                  fill=False,
                                  edgecolor="gray",
                                  linewidth=1))

    rf_offset = rf_params.offset
    rf_size = rf_params.size
    rf_stride = rf_params.stride

    # map from output grid space to input image
    def map_point(i: int, j: int):
        return np.array(rf_offset) + np.array([i, j]) * np.array(rf_stride)

    # plot RF grid based on rf params
    points = [
        map_point(i, j) for i, j in itertools.product(range(output_shape.w),
                                                      range(output_shape.h))
    ]

    points = np.array(points)
    plt.scatter(points[:, 1],
                points[:, 0],
                marker="o",
                c=(0.2, 0.9, 0.1, 0.9),
                s=10)

    # plot receptive field from corner point
    _plot_rect(ax,
               rect=to_rf_rect(rf_offset, rf_size),
               color=(0.9, 0.3, 0.2),
               linewidth=5,
               size=90)
    center_point = map_point(output_shape.w // 2, output_shape.h // 2)
    _plot_rect(ax,
               rect=to_rf_rect(GridPoint(center_point[0], center_point[1]),
                               rf_size),
               color=(0.1, 0.3, 0.9),
               linewidth=5,
               size=90)
    last_point = map_point(output_shape.w - 1, output_shape.h - 1)
    _plot_rect(ax,
               rect=to_rf_rect(GridPoint(last_point[0], last_point[1]),
                               rf_size),
               color=(0.1, 0.9, 0.3),
               linewidth=5,
               size=90)
    ax.set_aspect('equal')