def test_model(sparse, exp_recall_20, exp_recall_50, exp_ndcg_100): data_dir = 'tests/data/' model_dir = '/tmp/' train_df = pd.read_csv(data_dir + 'train.csv') val_df = pd.read_csv(data_dir + 'val.csv') # keep the items that exist in the training dataset val_df = val_df[val_df.sid.isin(train_df.sid.unique())] train_matrix, item_id_map, user_id_map = dataframe_to_csr_matrix(train_df, user_col='uid', item_col='sid', inter_col='watched') val_matrix, _, _ = dataframe_to_csr_matrix(val_df, user_col='uid', item_col='sid', inter_col='watched', item_id_map=item_id_map, user_id_map=user_id_map) train_dataset = RecommendationDataset(train_matrix) val_dataset = RecommendationDataset(val_matrix, train_matrix) use_cuda = False model = DynamicAutoencoder(hidden_layers=[200], activation_type='tanh', noise_prob=0.5, sparse=sparse) trainer = Recoder(model=model, use_cuda=use_cuda, optimizer_type='adam', loss='logloss') trainer.train(train_dataset=train_dataset, val_dataset=val_dataset, batch_size=500, lr=1e-3, weight_decay=2e-5, num_epochs=30, negative_sampling=True) # assert model metrics recall_20 = Recall(k=20, normalize=True) recall_50 = Recall(k=50, normalize=True) ndcg_100 = NDCG(k=100) results = trainer._evaluate(eval_dataset=val_dataset, num_recommendations=100, metrics=[recall_20, recall_50, ndcg_100], batch_size=500) for metric, value in list(results.items()): results[metric] = np.mean(results[metric]) assert np.isclose(results[recall_20], exp_recall_20, atol=0.01, rtol=0) assert np.isclose(results[recall_50], exp_recall_50, atol=0.01, rtol=0) assert np.isclose(results[ndcg_100], exp_ndcg_100, atol=0.01, rtol=0) # Save the model and evaluate again model_checkpoint = model_dir + 'test_model.model' state_file = trainer.save_state(model_checkpoint) model = DynamicAutoencoder(sparse=sparse) trainer = Recoder(model=model, use_cuda=use_cuda, optimizer_type='adam', loss='logloss') trainer.init_from_model_file(state_file) results = trainer._evaluate(eval_dataset=val_dataset, num_recommendations=100, metrics=[recall_20, recall_50, ndcg_100], batch_size=500) for metric, value in list(results.items()): results[metric] = np.mean(results[metric]) assert np.isclose(results[recall_20], exp_recall_20, atol=0.01, rtol=0) assert np.isclose(results[recall_50], exp_recall_50, atol=0.01, rtol=0) assert np.isclose(results[ndcg_100], exp_ndcg_100, atol=0.01, rtol=0) os.remove(state_file)
user_based=False, index_ids=False) # trainer.init_from_model_file(model_dir + 'bce_ns_d_0.0_n_0.5_200_epoch_50.model') model_checkpoint = model_dir + 'bce_ns_d_0.0_n_0.5_200' metrics = [ Recall(k=20, normalize=True), Recall(k=50, normalize=True), NDCG(k=100) ] try: trainer.train(train_dataset=train_dataset, val_dataset=val_tr_dataset, batch_size=500, lr=1e-3, weight_decay=2e-5, num_epochs=100, num_neg_samples=0, lr_milestones=[60, 80], num_data_workers=mp.cpu_count() if use_cuda else 0, model_checkpoint_prefix=model_checkpoint, checkpoint_freq=10, eval_num_recommendations=100, metrics=metrics, eval_freq=10) except (KeyboardInterrupt, SystemExit): trainer.save_state(model_checkpoint) raise