コード例 #1
0
    def _build_newsencoder(self, embedding_layer):
        """The main function to create news encoder of LSTUR.

        Args:
            embedding_layer (object): a word embedding layer.

        Return:
            object: the news encoder of LSTUR.
        """
        hparams = self.hparams
        sequences_input_title = keras.Input(shape=(hparams.title_size, ),
                                            dtype="int32")
        embedded_sequences_title = embedding_layer(sequences_input_title)

        y = layers.Dropout(hparams.dropout)(embedded_sequences_title)
        y = layers.Conv1D(
            hparams.filter_num,
            hparams.window_size,
            activation=hparams.cnn_activation,
            padding="same",
            bias_initializer=keras.initializers.Zeros(),
            kernel_initializer=keras.initializers.glorot_uniform(
                seed=self.seed),
        )(y)
        print(y)
        y = layers.Dropout(hparams.dropout)(y)
        y = layers.Masking()(
            OverwriteMasking()([y, ComputeMasking()(sequences_input_title)]))
        pred_title = AttLayer2(hparams.attention_hidden_dim, seed=self.seed)(y)
        print(pred_title)
        model = keras.Model(sequences_input_title,
                            pred_title,
                            name="news_encoder")
        return model
コード例 #2
0
    def _build_userencoder(self, newsencoder):
        """The main function to create user encoder of NAML.

        Args:
            newsencoder (object): the news encoder of NAML.

        Return:
            object: the user encoder of NAML.
        """
        hparams = self.hparams
        his_input_title_body_verts = keras.Input(
            shape=(hparams.his_size,
                   hparams.title_size + hparams.body_size + 2),
            dtype="int32",
        )

        click_news_presents = layers.TimeDistributed(newsencoder)(
            his_input_title_body_verts)
        user_present = AttLayer2(hparams.attention_hidden_dim,
                                 seed=self.seed)(click_news_presents)

        model = keras.Model(his_input_title_body_verts,
                            user_present,
                            name="user_encoder")
        return model
コード例 #3
0
    def _build_bodyencoder(self, embedding_layer):
        """build body encoder of NAML news encoder.

        Args:
            embedding_layer (object): a word embedding layer.

        Return:
            object: the body encoder of NAML.
        """
        hparams = self.hparams
        sequences_input_body = keras.Input(shape=(hparams.body_size, ),
                                           dtype="int32")
        embedded_sequences_body = embedding_layer(sequences_input_body)

        y = layers.Dropout(hparams.dropout)(embedded_sequences_body)
        y = layers.Conv1D(
            hparams.filter_num,
            hparams.window_size,
            activation=hparams.cnn_activation,
            padding="same",
            bias_initializer=keras.initializers.Zeros(),
            kernel_initializer=keras.initializers.glorot_uniform(
                seed=self.seed),
        )(y)
        y = layers.Dropout(hparams.dropout)(y)
        pred_body = AttLayer2(hparams.attention_hidden_dim, seed=self.seed)(y)
        pred_body = layers.Reshape((1, hparams.filter_num))(pred_body)

        model = keras.Model(sequences_input_body,
                            pred_body,
                            name="body_encoder")
        return model
コード例 #4
0
ファイル: nrms.py プロジェクト: william-hyx/Recommenders
    def _build_newsencoder(self, embedding_layer):
        """The main function to create news encoder of NRMS.

        Args:
            embedding_layer (object): a word embedding layer.

        Return:
            object: the news encoder of NRMS.
        """
        hparams = self.hparams
        sequences_input_title = keras.Input(shape=(hparams.title_size, ),
                                            dtype="int32")

        embedded_sequences_title = embedding_layer(sequences_input_title)

        y = layers.Dropout(hparams.dropout)(embedded_sequences_title)
        y = SelfAttention(hparams.head_num, hparams.head_dim,
                          seed=self.seed)([y, y, y])
        y = layers.Dropout(hparams.dropout)(y)
        pred_title = AttLayer2(hparams.attention_hidden_dim, seed=self.seed)(y)

        model = keras.Model(sequences_input_title,
                            pred_title,
                            name="news_encoder")
        return model
コード例 #5
0
    def _build_newsencoder(self, embedding_layer):
        """The main function to create news encoder of NAML.
        news encoder in composed of title encoder, body encoder, vert encoder and subvert encoder

        Args:
            embedding_layer (object): a word embedding layer.

        Return:
            object: the news encoder of NAML.
        """
        hparams = self.hparams
        input_title_body_verts = keras.Input(shape=(hparams.title_size +
                                                    hparams.body_size + 2, ),
                                             dtype="int32")

        sequences_input_title = layers.Lambda(
            lambda x: x[:, :hparams.title_size])(input_title_body_verts)
        sequences_input_body = layers.Lambda(
            lambda x: x[:, hparams.title_size:hparams.title_size + hparams.
                        body_size])(input_title_body_verts)
        input_vert = layers.Lambda(
            lambda x: x[:, hparams.title_size + hparams.body_size:hparams.
                        title_size + hparams.body_size + 1, ])(
                            input_title_body_verts)
        input_subvert = layers.Lambda(
            lambda x: x[:, hparams.title_size + hparams.body_size + 1:])(
                input_title_body_verts)

        title_repr = self._build_titleencoder(embedding_layer)(
            sequences_input_title)
        body_repr = self._build_bodyencoder(embedding_layer)(
            sequences_input_body)
        vert_repr = self._build_vertencoder()(input_vert)
        subvert_repr = self._build_subvertencoder()(input_subvert)

        concate_repr = layers.Concatenate(axis=-2)(
            [title_repr, body_repr, vert_repr, subvert_repr])
        news_repr = AttLayer2(hparams.attention_hidden_dim,
                              seed=self.seed)(concate_repr)

        model = keras.Model(input_title_body_verts,
                            news_repr,
                            name="news_encoder")
        return model
コード例 #6
0
ファイル: nrms.py プロジェクト: l294265421/recommenders
    def _build_userencoder(self, titleencoder):
        """The main function to create user encoder of NRMS.

        Args:
            titleencoder (object): the news encoder of NRMS.

        Return:
            object: the user encoder of NRMS.
        """
        hparams = self.hparams
        his_input_title = keras.Input(
            shape=(hparams.his_size, hparams.title_size), dtype="int32"
        )

        click_title_presents = layers.TimeDistributed(titleencoder)(his_input_title)
        y = SelfAttention(hparams.head_num, hparams.head_dim, seed=self.seed)(
            [click_title_presents] * 3
        )
        user_present = AttLayer2(hparams.attention_hidden_dim, seed=self.seed)(y)

        model = keras.Model(his_input_title, user_present, name="user_encoder")
        return model