def test_return_result_options(self, classifier): cl = classifier() if isinstance(cl, tuple(UNSUPERVISED_CLASSIFIERS)): cl.fit(self.X_train) else: cl.fit(self.X_train, self.y_train) prediction_default = cl.predict(self.X_test) assert isinstance(prediction_default, pd.MultiIndex) with rl.option_context('classification.return_type', 'index'): prediction_multiindex = cl.predict(comparison_vectors=self.X_train) assert isinstance(prediction_multiindex, pd.MultiIndex) with rl.option_context('classification.return_type', 'array'): prediction_ndarray = cl.predict(comparison_vectors=self.X_train) assert isinstance(prediction_ndarray, np.ndarray) with rl.option_context('classification.return_type', 'series'): prediction_series = cl.predict(comparison_vectors=self.X_train) assert isinstance(prediction_series, pd.Series) with pytest.raises(ValueError): with rl.option_context('classification.return_type', 'unknown_return_type'): cl.predict(comparison_vectors=self.X_train)
def test_options_context(): with rl.option_context("indexing.pairs", "multiindex"): rl.options.indexing.pairs = "multiindex" assert rl.get_option("indexing.pairs") == "multiindex"