def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, error_path): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject) em, f1, per_relation_metrics = runner.predict() save_se_list(runner.se_list, error_path) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, calculate_single_error=False) em, f1, per_relation_metrics = runner.predict() print(f'Total samples: {runner.total_samples}') return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer, device, trained_to_reject, calculate_single_error=False) em, f1, per_relation_metrics = runner.predict() with open('BERTZSREZSRE.pkl', 'wb') as wf: pickle.dump(per_relation_metrics, wf) return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}
def main(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer): runner = QARunner(qa_path, relations_filepath, data_directory, batch_size, must_choose_answer) em, f1, per_relation_metrics = runner.predict() return {'em': em, 'f1': f1, 'per_relation_metrics': per_relation_metrics}