コード例 #1
0
class ReformerEncDec(nn.Module):
    def __init__(self, dim, ignore_index=-100, pad_value=0, **kwargs):
        super().__init__()
        enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs)

        assert (
            "return_embedding" not in enc_kwargs
        ), "you cannot manually set the return embeddings flag for the encoder"
        assert ("dim" not in dec_kwargs and "dim" not in enc_kwargs
                ), "you must set the dim for both encoder and decoder"

        enc_kwargs["dim"] = dec_kwargs["dim"] = dim
        enc_kwargs["return_embeddings"] = True
        dec_kwargs["causal"] = True

        enc_kwargs.setdefault("bucket_size", 64)
        dec_kwargs.setdefault("bucket_size", enc_kwargs["bucket_size"] * 2)

        enc = ReformerLM(**enc_kwargs)
        dec = ReformerLM(**dec_kwargs)

        self.enc = TrainingWrapper(enc,
                                   ignore_index=ignore_index,
                                   pad_value=pad_value)
        self.dec = TrainingWrapper(dec,
                                   ignore_index=ignore_index,
                                   pad_value=pad_value)

    def generate(self, seq_in, seq_out_start, seq_len, **kwargs):
        enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
        enc_keys = self.enc(seq_in, **enc_kwargs)
        return self.dec.generate(seq_out_start,
                                 seq_len,
                                 keys=enc_keys,
                                 **{
                                     **dec_kwargs,
                                     **kwargs
                                 })

    def forward(self, seq_in, seq_out, return_loss=False, **kwargs):
        enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
        enc_keys = self.enc(seq_in, **enc_kwargs)
        return self.dec(seq_out,
                        return_loss=return_loss,
                        keys=enc_keys,
                        **dec_kwargs)
コード例 #2
0
class ReformerEncDec(nn.Module):
    def __init__(self, dim, ignore_index=-100, pad_value=0, **kwargs):
        super().__init__()
        enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs)

        assert 'return_embedding' not in enc_kwargs, 'you cannot manually set the return embeddings flag for the encoder'
        assert 'dim' not in dec_kwargs and 'dim' not in enc_kwargs, 'you must set the dim for both encoder and decoder'

        enc_kwargs['dim'] = dec_kwargs['dim'] = dim
        enc_kwargs['return_embeddings'] = True

        enc_kwargs.setdefault('bucket_size', 64)
        dec_kwargs.setdefault('bucket_size', enc_kwargs['bucket_size'] * 2)

        enc = ReformerLM(**enc_kwargs)
        dec = ReformerLM(**dec_kwargs)

        self.enc = TrainingWrapper(enc,
                                   ignore_index=ignore_index,
                                   pad_value=pad_value)
        self.dec = TrainingWrapper(dec,
                                   ignore_index=ignore_index,
                                   pad_value=pad_value)

    def generate(self, seq_in, seq_out_start, seq_len, **kwargs):
        enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs)
        enc_keys = self.enc(seq_in, **enc_kwargs)
        dec_kwargs.setdefault('context_mask', enc_kwargs['input_mask'])
        return self.dec.generate(seq_out_start,
                                 seq_len,
                                 keys=enc_keys,
                                 **{
                                     **dec_kwargs,
                                     **kwargs
                                 })

    def forward(self, seq_in, seq_out, return_loss=False, **kwargs):
        enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs)
        enc_keys = self.enc(seq_in, **enc_kwargs)
        dec_kwargs.setdefault('context_mask', enc_kwargs['input_mask'])
        return self.dec(seq_out,
                        return_loss=return_loss,
                        keys=enc_keys,
                        **dec_kwargs)