コード例 #1
0
ファイル: linear_model.py プロジェクト: yvette-suyu/about-ML
def enet_kernel_learning_admm2(
        K, y, lamda=0.01, beta=0.01, rho=1., max_iter=100, verbose=0, rtol=1e-4,
        tol=1e-4, return_n_iter=True, update_rho_options=None):
    """Elastic Net kernel learning.

    Solve the following problem via ADMM:
        min sum_{i=1}^p 1/2 ||y_i - alpha_i * sum_{k=1}^{n_k} w_k * K_{ik}||^2
        + lamda ||w||_1 + beta sum_{j=1}^{c_i}||alpha_j||_2^2
    """
    n_patients = len(K)
    n_kernels = len(K[0])
    coef = np.ones(n_kernels)
    alpha = [np.zeros(K[j].shape[2]) for j in range(n_patients)]

    u = [np.zeros(K[j].shape[1]) for j in range(n_patients)]
    u_1 = np.zeros(n_kernels)
    w_1 = np.zeros(n_kernels)

    x_old = [np.zeros(K[0].shape[1]) for j in range(n_patients)]
    w_1_old = w_1.copy()
    # w_2_old = w_2.copy()

    checks = []
    for iteration_ in range(max_iter):
        # update x
        A = [K[j].T.dot(coef) for j in range(n_patients)]
        x = [prox_laplacian(y[j] + rho * (A[j].T.dot(alpha[j]) - u[j]), rho / 2.)
             for j in range(n_patients)]

        # update alpha
        # solve (AtA + 2I)^-1 (Aty) with A = wK
        KK = [rho * A[j].dot(A[j].T) for j in range(n_patients)]
        yy = [rho * A[j].dot(x[j] + u[j]) for j in range(n_patients)]
        alpha = [_solve_cholesky_kernel(
            KK[j], yy[j][..., None], 2 * beta).ravel() for j in range(n_patients)]
        # equivalent to alpha_dot_K
        # solve (sum(AtA) + 2*rho I)^-1 (sum(Aty) + rho(w1+w2-u1-u2))
        # with A = K * alpha
        A = [K[j].dot(alpha[j]) for j in range(n_patients)]
        KK = sum(A[j].dot(A[j].T) for j in range(n_patients))
        yy = sum(A[j].dot(x[j] + u[j]) for j in range(n_patients))
        yy += w_1 - u_1
        coef = _solve_cholesky_kernel(KK, yy[..., None], 1).ravel()

        w_1 = soft_thresholding(coef + u_1, lamda / rho)
        # w_2 = prox_laplacian(coef + u_2, beta / rho)

        # update residuals
        alpha_coef_K = [
            alpha[j].dot(K[j].T.dot(coef)) for j in range(n_patients)]
        residuals = [x[j] - alpha_coef_K[j] for j in range(n_patients)]
        u = [u[j] + residuals[j] for j in range(n_patients)]
        u_1 += coef - w_1

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(coef - w_1) +
            sum(squared_norm(residuals[j]) for j in range(n_patients)))
        snorm = rho * np.sqrt(
            squared_norm(w_1 - w_1_old) +
            sum(squared_norm(x[j] - x_old[j]) for j in range(n_patients)))

        obj = objective_admm2(x, y, alpha, lamda, beta, w_1)
        check = convergence(
            obj=obj, rnorm=rnorm, snorm=snorm,
            e_pri=np.sqrt(coef.size + sum(
                x[j].size for j in range(n_patients))) * tol + rtol * max(
                    np.sqrt(squared_norm(coef) + sum(squared_norm(
                        alpha_coef_K[j]) for j in range(n_patients))),
                    np.sqrt(squared_norm(w_1) + sum(squared_norm(
                        x[j]) for j in range(n_patients)))),
            e_dual=np.sqrt(coef.size + sum(
                x[j].size for j in range(n_patients))) * tol + rtol * rho * (
                    np.sqrt(squared_norm(u_1) + sum(squared_norm(
                        u[j]) for j in range(n_patients)))))

        w_1_old = w_1.copy()
        x_old = [x[j].copy() for j in range(n_patients)]

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual and iteration_ > 1:
            break

        rho_new = update_rho(rho, rnorm, snorm, iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u = [u[j] * (rho / rho_new) for j in range(n_patients)]
        u_1 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [alpha, coef]
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #2
0
def kernel_latent_time_graphical_lasso(
    emp_cov,
    alpha=0.01,
    tau=1.0,
    rho=1.0,
    kernel_psi=None,
    kernel_phi=None,
    max_iter=100,
    verbose=False,
    psi="laplacian",
    phi="laplacian",
    mode="admm",
    tol=1e-4,
    rtol=1e-4,
    assume_centered=False,
    n_samples=None,
    return_history=False,
    return_n_iter=True,
    update_rho_options=None,
    compute_objective=True,
    init="empirical",
):
    r"""Time-varying latent variable graphical lasso solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T -n_i log_likelihood(K_i-L_i) + alpha ||K_i||_{od,1}
            + tau ||L_i||_*
            + sum_{s>t}^T k_psi(s,t) Psi(K_s - K_t)
            + sum_{s>t}^T k_phi(s,t)(L_s - L_t)

    where S is the empirical covariance of the data
    matrix D (training observations by features).

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Empirical covariance of data.
    alpha, tau, beta, eta : float, optional
        Regularisation parameters.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.

    Returns
    -------
    K, L : numpy.array, 3-dimensional (T x d x d)
        Solution to the problem for each time t=1...T .
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)
    phi, prox_phi, phi_node_penalty = check_norm_prox(phi)
    n_times, _, n_features = emp_cov.shape

    if kernel_psi is None:
        kernel_psi = np.eye(n_times)
    if kernel_phi is None:
        kernel_phi = np.eye(n_times)

    Z_0 = init_precision(emp_cov, mode=init)
    W_0 = np.zeros_like(Z_0)
    X_0 = np.zeros_like(Z_0)
    R_old = np.zeros_like(Z_0)

    Z_M, Z_M_old = {}, {}
    Y_M = {}
    W_M, W_M_old = {}, {}
    U_M = {}
    for m in range(1, n_times):
        Z_L = Z_0.copy()[:-m]
        Z_R = Z_0.copy()[m:]
        Z_M[m] = (Z_L, Z_R)

        W_L = np.zeros_like(Z_L)
        W_R = np.zeros_like(Z_R)
        W_M[m] = (W_L, W_R)

        Y_L = np.zeros_like(Z_L)
        Y_R = np.zeros_like(Z_R)
        Y_M[m] = (Y_L, Y_R)

        U_L = np.zeros_like(W_L)
        U_R = np.zeros_like(W_R)
        U_M[m] = (U_L, U_R)

        Z_L_old = np.zeros_like(Z_L)
        Z_R_old = np.zeros_like(Z_R)
        Z_M_old[m] = (Z_L_old, Z_R_old)

        W_L_old = np.zeros_like(W_L)
        W_R_old = np.zeros_like(W_R)
        W_M_old[m] = (W_L_old, W_R_old)

    if n_samples is None:
        n_samples = np.ones(n_times)

    checks = []
    for iteration_ in range(max_iter):
        # update R
        A = Z_0 - W_0 - X_0
        A += A.transpose(0, 2, 1)
        A /= 2.0
        A *= -rho / n_samples[:, None, None]
        A += emp_cov
        # A = emp_cov / rho - A

        R = np.array(
            [prox_logdet(a, lamda=ni / rho) for a, ni in zip(A, n_samples)])

        # update Z_0
        A = R + W_0 + X_0
        for m in range(1, n_times):
            A[:-m] += Z_M[m][0] - Y_M[m][0]
            A[m:] += Z_M[m][1] - Y_M[m][1]

        A /= n_times
        Z_0 = soft_thresholding(A, lamda=alpha / (rho * n_times))

        # update W_0
        A = Z_0 - R - X_0
        for m in range(1, n_times):
            A[:-m] += W_M[m][0] - U_M[m][0]
            A[m:] += W_M[m][1] - U_M[m][1]

        A /= n_times
        A += A.transpose(0, 2, 1)
        A /= 2.0

        W_0 = np.array(
            [prox_trace_indicator(a, lamda=tau / (rho * n_times)) for a in A])

        # update residuals
        X_0 += R - Z_0 + W_0

        for m in range(1, n_times):
            # other Zs
            Y_L, Y_R = Y_M[m]
            A_L = Z_0[:-m] + Y_L
            A_R = Z_0[m:] + Y_R
            if not psi_node_penalty:
                prox_e = prox_psi(A_R - A_L,
                                  lamda=2.0 *
                                  np.diag(kernel_psi, m)[:, None, None] / rho)
                Z_L = 0.5 * (A_L + A_R - prox_e)
                Z_R = 0.5 * (A_L + A_R + prox_e)
            else:
                Z_L, Z_R = prox_psi(
                    np.concatenate((A_L, A_R), axis=1),
                    lamda=0.5 * np.diag(kernel_psi, m)[:, None, None] / rho,
                    rho=rho,
                    tol=tol,
                    rtol=rtol,
                    max_iter=max_iter,
                )
            Z_M[m] = (Z_L, Z_R)

            # update other residuals
            Y_L += Z_0[:-m] - Z_L
            Y_R += Z_0[m:] - Z_R

            # other Ws
            U_L, U_R = U_M[m]
            A_L = W_0[:-m] + U_L
            A_R = W_0[m:] + U_R
            if not phi_node_penalty:
                prox_e = prox_phi(A_R - A_L,
                                  lamda=2.0 *
                                  np.diag(kernel_phi, m)[:, None, None] / rho)
                W_L = 0.5 * (A_L + A_R - prox_e)
                W_R = 0.5 * (A_L + A_R + prox_e)
            else:
                W_L, W_R = prox_phi(
                    np.concatenate((A_L, A_R), axis=1),
                    lamda=0.5 * np.diag(kernel_phi, m)[:, None, None] / rho,
                    rho=rho,
                    tol=tol,
                    rtol=rtol,
                    max_iter=max_iter,
                )
            W_M[m] = (W_L, W_R)

            # update other residuals
            U_L += W_0[:-m] - W_L
            U_R += W_0[m:] - W_R

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(R - Z_0 + W_0) + sum(
                squared_norm(Z_0[:-m] - Z_M[m][0]) +
                squared_norm(Z_0[m:] - Z_M[m][1]) +
                squared_norm(W_0[:-m] - W_M[m][0]) +
                squared_norm(W_0[m:] - W_M[m][1]) for m in range(1, n_times)))

        snorm = rho * np.sqrt(
            squared_norm(R - R_old) + sum(
                squared_norm(Z_M[m][0] - Z_M_old[m][0]) +
                squared_norm(Z_M[m][1] - Z_M_old[m][1]) +
                squared_norm(W_M[m][0] - W_M_old[m][0]) +
                squared_norm(W_M[m][1] - W_M_old[m][1])
                for m in range(1, n_times)))

        obj = (objective(emp_cov, n_samples, R, Z_0, Z_M, W_0, W_M, alpha, tau,
                         kernel_psi, kernel_phi, psi, phi)
               if compute_objective else np.nan)

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=n_features * np.sqrt(n_times * (2 * n_times - 1)) * tol +
            rtol * max(
                np.sqrt(
                    squared_norm(R) + sum(
                        squared_norm(Z_M[m][0]) + squared_norm(Z_M[m][1]) +
                        squared_norm(W_M[m][0]) + squared_norm(W_M[m][1])
                        for m in range(1, n_times))),
                np.sqrt(
                    squared_norm(Z_0 - W_0) + sum(
                        squared_norm(Z_0[:-m]) + squared_norm(Z_0[m:]) +
                        squared_norm(W_0[:-m]) + squared_norm(W_0[m:])
                        for m in range(1, n_times))),
            ),
            e_dual=n_features * np.sqrt(n_times * (2 * n_times - 1)) * tol +
            rtol * rho * np.sqrt(
                squared_norm(X_0) + sum(
                    squared_norm(Y_M[m][0]) + squared_norm(Y_M[m][1]) +
                    squared_norm(U_M[m][0]) + squared_norm(U_M[m][1])
                    for m in range(1, n_times))),
        )

        R_old = R.copy()
        for m in range(1, n_times):
            Z_M_old[m] = (Z_M[m][0].copy(), Z_M[m][1].copy())
            W_M_old[m] = (W_M[m][0].copy(), W_M[m][1].copy())

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        X_0 *= rho / rho_new
        for m in range(1, n_times):
            Y_L, Y_R = Y_M[m]
            Y_L *= rho / rho_new
            Y_R *= rho / rho_new

            U_L, U_R = U_M[m]
            U_L *= rho / rho_new
            U_R *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = np.array([linalg.pinvh(x) for x in Z_0])
    return_list = [Z_0, W_0, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #3
0
ファイル: linear_model.py プロジェクト: yvette-suyu/about-ML
def enet_kernel_learning_admm(
        K, y, lamda=0.01, beta=0.01, rho=1., max_iter=100, verbose=0, rtol=1e-4,
        tol=1e-4, return_n_iter=True, update_rho_options=None):
    """Elastic Net kernel learning.

    Solve the following problem via ADMM:
        min sum_{i=1}^p 1/2 ||alpha_i * w * K_i - y_i||^2 + lamda ||w||_1 +
        + beta||w||_2^2
    """
    n_patients = len(K)
    n_kernels = len(K[0])
    coef = np.ones(n_kernels)
    u_1 = np.zeros(n_kernels)
    u_2 = np.zeros(n_kernels)
    w_1 = np.zeros(n_kernels)
    w_2 = np.zeros(n_kernels)

    w_1_old = w_1.copy()
    w_2_old = w_2.copy()

    checks = []
    for iteration_ in range(max_iter):
        # update alpha
        # solve (AtA + 2I)^-1 (Aty) with A = wK
        A = [K[j].T.dot(coef) for j in range(n_patients)]
        KK = [A[j].dot(A[j].T) for j in range(n_patients)]
        yy = [y[j].dot(A[j]) for j in range(n_patients)]

        alpha = [_solve_cholesky_kernel(
            KK[j], yy[j][..., None], 2).ravel() for j in range(n_patients)]
        # alpha = [_solve_cholesky_kernel(
        #     K_dot_coef[j], y[j][..., None], 0).ravel() for j in range(n_patients)]

        w_1 = soft_thresholding(coef + u_1, lamda / rho)
        w_2 = prox_laplacian(coef + u_2, beta / rho)

        # equivalent to alpha_dot_K
        # solve (sum(AtA) + 2*rho I)^-1 (sum(Aty) + rho(w1+w2-u1-u2))
        # with A = K * alpha
        A = [K[j].dot(alpha[j]) for j in range(n_patients)]
        KK = sum(A[j].dot(A[j].T) for j in range(n_patients))
        yy = sum(y[j].dot(A[j].T) for j in range(n_patients))
        yy += rho * (w_1 + w_2 - u_1 - u_2)

        coef = _solve_cholesky_kernel(KK, yy[..., None], 2 * rho).ravel()

        # update residuals
        u_1 += coef - w_1
        u_2 += coef - w_2

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(squared_norm(coef - w_1) + squared_norm(coef - w_2))
        snorm = rho * np.sqrt(
            squared_norm(w_1 - w_1_old) + squared_norm(w_2 - w_2_old))

        obj = objective_admm(K, y, alpha, lamda, beta, coef, w_1, w_2)

        check = convergence(
            obj=obj, rnorm=rnorm, snorm=snorm,
            e_pri=np.sqrt(2 * coef.size) * tol + rtol * max(
                np.sqrt(squared_norm(coef) + squared_norm(coef)),
                np.sqrt(squared_norm(w_1) + squared_norm(w_2))),
            e_dual=np.sqrt(2 * coef.size) * tol + rtol * rho * (
                np.sqrt(squared_norm(u_1) + squared_norm(u_2))))

        w_1_old = w_1.copy()
        w_2_old = w_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual and iteration_ > 1:
            break

        rho_new = update_rho(rho, rnorm, snorm, iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u_1 *= rho / rho_new
        u_2 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [alpha, coef]
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #4
0
def infimal_convolution(
    S,
    alpha=1.0,
    tau=1.0,
    rho=1.0,
    max_iter=100,
    verbose=False,
    tol=1e-4,
    rtol=1e-2,
    return_history=False,
    return_n_iter=True,
    update_rho_options=None,
    compute_objective=True,
):
    r"""Latent variable graphical lasso solver.

    Solves the following problem via ADMM:
        min - log_likelihood(S, K-L) + alpha ||K||_{od,1} + tau ||L_i||_*

    where S is the empirical covariance of the data
    matrix D (training observations by features).

    Parameters
    ----------
    emp_cov : array-like
        Empirical covariance matrix.
    alpha, tau : float, optional
        Regularisation parameters.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    return_n_iter : bool, optional
        Return the number of iteration before convergence.
    verbose : bool, default False
        Print info at each iteration.

    Returns
    -------
    K, L : np.array, 2-dimensional, size (d x d)
        Solution to the problem.
    S : np.array, 2 dimensional
        Empirical covariance matrix.
    n_iter : int
        If return_n_iter, returns the number of iterations before convergence.
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    K = np.zeros_like(S)
    L = np.zeros_like(S)
    U = np.zeros_like(S)
    R_old = np.zeros_like(S)

    checks = []
    for iteration_ in range(max_iter):
        # update R
        A = K - L - U
        A += A.T
        A /= 2.0
        R = prox_laplacian(S + rho * A, lamda=rho / 2.0)

        A = L + R + U
        K = soft_thresholding(A, lamda=alpha / rho)

        A = K - R - U
        A += A.T
        A /= 2.0
        L = prox_trace_indicator(A, lamda=tau / rho)

        # update residuals
        U += R - K + L

        # diagnostics, reporting, termination checks
        obj = objective(S, R, K, L, alpha,
                        tau) if compute_objective else np.nan
        rnorm = np.linalg.norm(R - K + L)
        snorm = rho * np.linalg.norm(R - R_old)
        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(R.size) * tol +
            rtol * max(np.linalg.norm(R), np.linalg.norm(K - L)),
            e_dual=np.sqrt(R.size) * tol + rtol * rho * np.linalg.norm(U),
        )
        R_old = R.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break
        if check.obj == np.inf:
            break
        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        U *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = linalg.pinvh(K)
    return_list = [K, L, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #5
0
def _fit_time_poisson_model(
    X,
    alpha=0.01,
    rho=1,
    kernel=None,
    max_iter=100,
    verbose=False,
    psi="laplacian",
    gamma=0.1,
    tol=1e-4,
    rtol=1e-4,
    return_history=False,
    return_n_iter=True,
    compute_objective=True,
    stop_at=None,
    stop_when=1e-4,
    n_cores=-1,
):
    """Time-varying graphical model solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T -n_i log_likelihood(K_i, X_i) + alpha ||K_i||_{od,1}
            + sum_{s>t}^T k(s,t) Psi(K_s - K_t)

    where X is a matrix n_i x D, the observations at time i and the
    log-likelihood changes according to the distribution.

    Parameters
    ----------
    X : ndarray, shape (n_times, n_samples, n_features)
        Data matrix. It has to contain two values: 0 or 1, -1 or 1.
        alpha, beta : float, optional
        Regularisation parameter.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    init : {'empirical', 'zeros', ndarray}, default 'empirical'
        How to initialise the inverse covariance matrix. Default is take
        the empirical covariance and inverting it.

    Returns
    -------
    X : numpy.array, 2-dimensional
        Solution to the problem.
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)
    n_times, n_samples, n_features = X.shape
    n_samples = np.array([n_samples] * n_times)

    if kernel is None:
        kernel = np.eye(n_times)

    K = np.zeros((n_times, n_features, n_features))

    Z_M = {}
    U_M = {}
    Z_M_old = {}

    for m in range(1, n_times):
        # all possible non markovians jumps
        Z_L = K.copy()[:-m]
        Z_R = K.copy()[m:]
        Z_M[m] = (Z_L, Z_R)

        U_L = np.zeros_like(Z_L)
        U_R = np.zeros_like(Z_R)
        U_M[m] = (U_L, U_R)

        Z_L_old = np.zeros_like(Z_L)
        Z_R_old = np.zeros_like(Z_R)
        Z_M_old[m] = (Z_L_old, Z_R_old)

    checks = [convergence(obj=objective(X, K, Z_M, alpha, kernel, psi))]
    for iteration_ in range(max_iter):
        # update K
        A = np.zeros_like(K)
        for m in range(1, n_times):
            A[:-m] += Z_M[m][0] - U_M[m][0]
            A[m:] += Z_M[m][1] - U_M[m][1]

        A /= n_times
        A += A.transpose(0, 2, 1)
        A /= 2.0
        # K_new = np.zeros_like(K)

        for t in range(n_times):
            thetas_pred = []
            for v in range(n_features):
                inner_verbose = max(0, verbose - 1)
                res = fit_each_variable(X[t, :, :],
                                        v,
                                        alpha,
                                        tol=tol,
                                        verbose=inner_verbose,
                                        A=A[t, :, :],
                                        T=n_times,
                                        rho=rho)
                thetas_pred.append(res[0])

            K[t, :, :] = build_adjacency_matrix(thetas_pred, "union")

        # other Zs
        for m in range(1, n_times):
            U_L, U_R = U_M[m]
            A_L = K[:-m] + U_L
            A_R = K[m:] + U_R
            if not psi_node_penalty:
                prox_e = prox_psi(A_R - A_L,
                                  lamda=2.0 *
                                  np.diag(kernel, m)[:, None, None] / rho)
                Z_L = 0.5 * (A_L + A_R - prox_e)
                Z_R = 0.5 * (A_L + A_R + prox_e)
            else:
                Z_L, Z_R = prox_psi(
                    np.concatenate((A_L, A_R), axis=1),
                    lamda=0.5 * np.diag(kernel, m)[:, None, None] / rho,
                    rho=rho,
                    tol=tol,
                    rtol=rtol,
                    max_iter=max_iter,
                )
            Z_M[m] = (Z_L, Z_R)

            # update other residuals
            U_L += K[:-m] - Z_L
            U_R += K[m:] - Z_R

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            sum(
                squared_norm(K[:-m] - Z_M[m][0]) +
                squared_norm(K[m:] - Z_M[m][1]) for m in range(1, n_times)))

        snorm = rho * np.sqrt(
            sum(
                squared_norm(Z_M[m][0] - Z_M_old[m][0]) +
                squared_norm(Z_M[m][1] - Z_M_old[m][1])
                for m in range(1, n_times)))

        obj = objective(X, K, Z_M, alpha, kernel,
                        psi) if compute_objective else np.nan

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=n_features * n_times * tol + rtol * max(
                np.sqrt(
                    sum(
                        squared_norm(Z_M[m][0]) + squared_norm(Z_M[m][1])
                        for m in range(1, n_times))),
                np.sqrt(
                    squared_norm(K) + sum(
                        squared_norm(K[:-m]) + squared_norm(K[m:])
                        for m in range(1, n_times))),
            ),
            e_dual=n_features * n_times * tol + rtol * rho * np.sqrt(
                sum(
                    squared_norm(U_M[m][0]) + squared_norm(U_M[m][1])
                    for m in range(1, n_times))),
        )
        for m in range(1, n_times):
            Z_M_old[m] = (Z_M[m][0].copy(), Z_M[m][1].copy())

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if stop_at is not None:
            if abs(check.obj - stop_at) / abs(stop_at) < stop_when:
                break

        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        # U_0 *= rho / rho_new
        for m in range(1, n_times):
            U_L, U_R = U_M[m]
            U_L *= rho / rho_new
            U_R *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [K]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_ + 1)
    return return_list
コード例 #6
0
def prox_node_penalty(A_12, lamda, rho=1, tol=1e-4, rtol=1e-2, max_iter=500):
    """Lamda = beta / (2. * rho).

    A_12 = np.vstack((A_1, A_2))
    """
    n_time, _, n_dim = A_12.shape

    U_1 = np.full((A_12.shape[0], n_dim, n_dim), 1.0 / n_dim, dtype=float)
    U_2 = np.copy(U_1)
    Y_1 = np.copy(U_1)
    Y_2 = np.copy(U_1)

    C = np.hstack((np.eye(n_dim), -np.eye(n_dim), np.eye(n_dim)))
    inverse = np.linalg.inv(C.T.dot(C) + 2 * np.eye(3 * n_dim))

    V = np.zeros_like(U_1)
    W = np.zeros_like(U_1)
    V_old = np.zeros_like(U_1)
    W_old = np.zeros_like(U_1)

    for iteration_ in range(max_iter):
        A = (Y_1 - Y_2 - W - U_1 + (W.transpose(0, 2, 1) - U_2).transpose(0, 2, 1)) / 2.0
        V = blockwise_soft_thresholding_symmetric(A, lamda=lamda)

        A = np.concatenate(((V + U_2).transpose(0, 2, 1), A_12), axis=1)
        D = V + U_1
        # Z = np.linalg.solve(C.T*C + eta*np.identity(3*n), - C.T*D + eta* A)
        Z = np.empty_like(A)
        for i, (A_i, D_i) in enumerate(zip(A, D)):
            Z[i] = inverse.dot(2 * A_i - C.T.dot(D_i))
        W, Y_1, Y_2 = (Z[:, i * n_dim : (i + 1) * n_dim, :] for i in range(3))

        # update residuals
        delta_U_1 = V + W - (Y_1 - Y_2)
        delta_U_2 = V - W.transpose(0, 2, 1)
        U_1 += delta_U_1
        U_2 += delta_U_2

        # diagnostics
        rnorm = np.sqrt(squared_norm(delta_U_1) + squared_norm(delta_U_2))
        snorm = rho * np.sqrt(squared_norm(W - W_old) + squared_norm(V + W - V_old - W_old))
        check = convergence(
            obj=np.nan,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(2 * V.size) * tol
            + rtol
            * max(np.sqrt(squared_norm(W) + squared_norm(V + W)), np.sqrt(squared_norm(V) + squared_norm(Y_1 - Y_2))),
            e_dual=np.sqrt(2 * V.size) * tol + rtol * rho * np.sqrt(squared_norm(U_1) + squared_norm(U_2)),
        )
        W_old = W.copy()
        V_old = V.copy()

        # if np.linalg.norm(delta_U_1, 'fro') < tol and \
        #         np.linalg.norm(delta_U_2, 'fro') < tol:
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break
        rho_new = update_rho(rho, rnorm, snorm, iteration=iteration_)
        # scaled dual variables should be also rescaled
        U_1 *= rho / rho_new
        U_2 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Node norm did not converge.")
    return Y_1, Y_2
コード例 #7
0
def test_update_rho():
    """Test update_rho function."""
    rho = update_rules.update_rho(1, 100, 0, mu=10, tau_inc=2, tau_dec=2)
    assert rho == 2
    rho = update_rules.update_rho(1, 0, 100, mu=10, tau_inc=2, tau_dec=2)
    assert rho == 0.5
コード例 #8
0
def latent_time_matrix_decomposition(emp_cov,
                                     alpha=0.01,
                                     tau=1.,
                                     rho=1.,
                                     beta=1.,
                                     eta=1.,
                                     max_iter=100,
                                     verbose=False,
                                     psi='laplacian',
                                     phi='laplacian',
                                     mode='admm',
                                     tol=1e-4,
                                     rtol=1e-4,
                                     assume_centered=False,
                                     return_history=False,
                                     return_n_iter=True,
                                     update_rho_options=None,
                                     compute_objective=True):
    r"""Latent variable time-varying matrix decomposition solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T || S_i-(K_i-L_i)||^2 + alpha ||K_i||_{od,1}
            + tau ||L_i||_*
            + beta sum_{i=2}^T Psi(K_i - K_{i-1})
            + eta sum_{i=2}^T Phi(L_i - L_{i-1})

    where S is the matrix to decompose.

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Matrix to decompose.
    alpha, tau, beta, eta : float, optional
        Regularisation parameters.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.

    Returns
    -------
    K, L : numpy.array, 3-dimensional (T x d x d)
        Solution to the problem for each time t=1...T .
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)
    phi, prox_phi, phi_node_penalty = check_norm_prox(phi)

    Z_0 = np.zeros_like(emp_cov)
    Z_1 = np.zeros_like(Z_0)[:-1]
    Z_2 = np.zeros_like(Z_0)[1:]
    W_0 = np.zeros_like(Z_0)
    W_1 = np.zeros_like(Z_1)
    W_2 = np.zeros_like(Z_2)

    X_0 = np.zeros_like(Z_0)
    X_1 = np.zeros_like(Z_1)
    X_2 = np.zeros_like(Z_2)
    U_1 = np.zeros_like(W_1)
    U_2 = np.zeros_like(W_2)

    R_old = np.zeros_like(Z_0)
    Z_1_old = np.zeros_like(Z_1)
    Z_2_old = np.zeros_like(Z_2)
    W_1_old = np.zeros_like(W_1)
    W_2_old = np.zeros_like(W_2)

    # divisor for consensus variables, accounting for two less matrices
    divisor = np.full(emp_cov.shape[0], 3, dtype=float)
    divisor[0] -= 1
    divisor[-1] -= 1

    checks = []
    for iteration_ in range(max_iter):
        # update R
        A = Z_0 - W_0 - X_0
        R = (rho * A + 2 * emp_cov) / (2 + rho)

        # update Z_0
        A = R + W_0 + X_0
        A[:-1] += Z_1 - X_1
        A[1:] += Z_2 - X_2
        A /= divisor[:, None, None]
        # soft_thresholding_ = partial(soft_thresholding, lamda=alpha / rho)
        # Z_0 = np.array(map(soft_thresholding_, A))
        Z_0 = soft_thresholding(A,
                                lamda=alpha / (rho * divisor[:, None, None]))

        # update Z_1, Z_2
        A_1 = Z_0[:-1] + X_1
        A_2 = Z_0[1:] + X_2
        if not psi_node_penalty:
            prox_e = prox_psi(A_2 - A_1, lamda=2. * beta / rho)
            Z_1 = .5 * (A_1 + A_2 - prox_e)
            Z_2 = .5 * (A_1 + A_2 + prox_e)
        else:
            Z_1, Z_2 = prox_psi(np.concatenate((A_1, A_2), axis=1),
                                lamda=.5 * beta / rho,
                                rho=rho,
                                tol=tol,
                                rtol=rtol,
                                max_iter=max_iter)

        # update W_0
        A = Z_0 - R - X_0
        A[:-1] += W_1 - U_1
        A[1:] += W_2 - U_2
        A /= divisor[:, None, None]
        A += A.transpose(0, 2, 1)
        A /= 2.

        W_0 = np.array([
            prox_trace_indicator(a, lamda=tau / (rho * div))
            for a, div in zip(A, divisor)
        ])

        # update W_1, W_2
        A_1 = W_0[:-1] + U_1
        A_2 = W_0[1:] + U_2
        if not phi_node_penalty:
            prox_e = prox_phi(A_2 - A_1, lamda=2. * eta / rho)
            W_1 = .5 * (A_1 + A_2 - prox_e)
            W_2 = .5 * (A_1 + A_2 + prox_e)
        else:
            W_1, W_2 = prox_phi(np.concatenate((A_1, A_2), axis=1),
                                lamda=.5 * eta / rho,
                                rho=rho,
                                tol=tol,
                                rtol=rtol,
                                max_iter=max_iter)

        # update residuals
        X_0 += R - Z_0 + W_0
        X_1 += Z_0[:-1] - Z_1
        X_2 += Z_0[1:] - Z_2
        U_1 += W_0[:-1] - W_1
        U_2 += W_0[1:] - W_2

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(R - Z_0 + W_0) + squared_norm(Z_0[:-1] - Z_1) +
            squared_norm(Z_0[1:] - Z_2) + squared_norm(W_0[:-1] - W_1) +
            squared_norm(W_0[1:] - W_2))

        snorm = rho * np.sqrt(
            squared_norm(R - R_old) + squared_norm(Z_1 - Z_1_old) +
            squared_norm(Z_2 - Z_2_old) + squared_norm(W_1 - W_1_old) +
            squared_norm(W_2 - W_2_old))

        obj = objective(emp_cov, R, Z_0, Z_1, Z_2, W_0, W_1, W_2,
                        alpha, tau, beta, eta, psi, phi) \
            if compute_objective else np.nan

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(R.size + 4 * Z_1.size) * tol + rtol * max(
                np.sqrt(
                    squared_norm(R) + squared_norm(Z_1) + squared_norm(Z_2) +
                    squared_norm(W_1) + squared_norm(W_2)),
                np.sqrt(
                    squared_norm(Z_0 - W_0) + squared_norm(Z_0[:-1]) +
                    squared_norm(Z_0[1:]) + squared_norm(W_0[:-1]) +
                    squared_norm(W_0[1:]))),
            e_dual=np.sqrt(R.size + 4 * Z_1.size) * tol + rtol * rho *
            (np.sqrt(
                squared_norm(X_0) + squared_norm(X_1) + squared_norm(X_2) +
                squared_norm(U_1) + squared_norm(U_2))))

        R_old = R.copy()
        Z_1_old = Z_1.copy()
        Z_2_old = Z_2.copy()
        W_1_old = W_1.copy()
        W_2_old = W_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        X_0 *= rho / rho_new
        X_1 *= rho / rho_new
        X_2 *= rho / rho_new
        U_1 *= rho / rho_new
        U_2 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [Z_0, W_0]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #9
0
ファイル: lasso.py プロジェクト: multikernels/multikernel-1
def lasso_kernel_admm(K,
                      y,
                      lamda=0.01,
                      rho=1.,
                      max_iter=100,
                      verbose=0,
                      rtol=1e-4,
                      tol=1e-4,
                      return_n_iter=True,
                      update_rho_options=None,
                      sample_weight=None):
    """Elastic Net kernel learning.

    Solve the following problem via ADMM:
        min sum_{i=1}^p 1/2 ||y_i - alpha_i * sum_{k=1}^{n_k} w_k * K_{ik}||^2
        + lamda ||w||_1 + beta sum_{j=1}^{c_i}||alpha_j||_2^2
    """
    n_kernels, n_samples, n_features = K.shape
    coef = np.ones(n_kernels)

    # alpha = [np.zeros(K[j].shape[2]) for j in range(n_patients)]
    # u = [np.zeros(K[j].shape[1]) for j in range(n_patients)]
    w_1 = coef.copy()
    u_1 = np.zeros(n_kernels)

    # x_old = [np.zeros(K[0].shape[1]) for j in range(n_patients)]
    w_1_old = w_1.copy()
    Y = y[:, None].dot(y[:, None].T)

    checks = []
    for iteration_ in range(max_iter):
        # update w
        KK = 2 * np.tensordot(K, K.T, axes=([1, 2], [0, 1]))
        yy = 2 * np.tensordot(Y, K, axes=([0, 1], [1, 2]))
        yy += rho * (w_1 - u_1)
        coef = _solve_cholesky_kernel(KK, yy[..., None], rho).ravel()

        w_1 = soft_thresholding(coef + u_1, lamda / rho)
        # w_2 = prox_laplacian(coef + u_2, beta / rho)

        u_1 += coef - w_1

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(squared_norm(coef - w_1))
        snorm = rho * np.sqrt(squared_norm(w_1 - w_1_old))

        obj = lasso_objective(Y, coef, K, w_1, lamda)
        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(coef.size) * tol + rtol *
            max(np.sqrt(squared_norm(coef)), np.sqrt(squared_norm(w_1))),
            e_dual=np.sqrt(coef.size) * tol + rtol * rho *
            (np.sqrt(squared_norm(u_1))))

        w_1_old = w_1.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual and iteration_ > 1:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u_1 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [coef]
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #10
0
def enet_kernel_learning_admm2(K,
                               y,
                               lamda=0.01,
                               beta=0.01,
                               rho=1.,
                               max_iter=100,
                               verbose=0,
                               rtol=1e-4,
                               tol=1e-4,
                               return_n_iter=True,
                               update_rho_options=None):
    """Elastic Net kernel learning.

    Solve the following problem via ADMM:
        min sum_{i=1}^p 1/2 ||y_i - alpha_i * sum_{k=1}^{n_k} w_k * K_{ik}||^2
        + lamda ||w||_1 + beta sum_{j=1}^{c_i}||alpha_j||_2^2
    """
    n_patients = len(K)
    n_kernels = len(K[0])
    coef = np.ones(n_kernels)
    alpha = [np.zeros(K[j].shape[2]) for j in range(n_patients)]

    u = [np.zeros(K[j].shape[1]) for j in range(n_patients)]
    u_1 = np.zeros(n_kernels)
    w_1 = np.zeros(n_kernels)

    x_old = [np.zeros(K[0].shape[1]) for j in range(n_patients)]
    w_1_old = w_1.copy()
    # w_2_old = w_2.copy()

    checks = []
    for iteration_ in range(max_iter):
        # update x
        A = [K[j].T.dot(coef) for j in range(n_patients)]
        x = [
            prox_laplacian(y[j] + rho * (A[j].T.dot(alpha[j]) - u[j]),
                           rho / 2.) for j in range(n_patients)
        ]

        # update alpha
        # solve (AtA + 2I)^-1 (Aty) with A = wK
        KK = [rho * A[j].dot(A[j].T) for j in range(n_patients)]
        yy = [rho * A[j].dot(x[j] + u[j]) for j in range(n_patients)]
        alpha = [
            _solve_cholesky_kernel(KK[j], yy[j][..., None], 2 * beta).ravel()
            for j in range(n_patients)
        ]
        # equivalent to alpha_dot_K
        # solve (sum(AtA) + 2*rho I)^-1 (sum(Aty) + rho(w1+w2-u1-u2))
        # with A = K * alpha
        A = [K[j].dot(alpha[j]) for j in range(n_patients)]
        KK = sum(A[j].dot(A[j].T) for j in range(n_patients))
        yy = sum(A[j].dot(x[j] + u[j]) for j in range(n_patients))
        yy += w_1 - u_1
        coef = _solve_cholesky_kernel(KK, yy[..., None], 1).ravel()

        w_1 = soft_thresholding(coef + u_1, lamda / rho)
        # w_2 = prox_laplacian(coef + u_2, beta / rho)

        # update residuals
        alpha_coef_K = [
            alpha[j].dot(K[j].T.dot(coef)) for j in range(n_patients)
        ]
        residuals = [x[j] - alpha_coef_K[j] for j in range(n_patients)]
        u = [u[j] + residuals[j] for j in range(n_patients)]
        u_1 += coef - w_1

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(coef - w_1) +
            sum(squared_norm(residuals[j]) for j in range(n_patients)))
        snorm = rho * np.sqrt(
            squared_norm(w_1 - w_1_old) +
            sum(squared_norm(x[j] - x_old[j]) for j in range(n_patients)))

        obj = objective_admm2(x, y, alpha, lamda, beta, w_1)
        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(coef.size + sum(x[j].size
                                          for j in range(n_patients))) * tol +
            rtol * max(
                np.sqrt(
                    squared_norm(coef) + sum(
                        squared_norm(alpha_coef_K[j])
                        for j in range(n_patients))),
                np.sqrt(
                    squared_norm(w_1) +
                    sum(squared_norm(x[j]) for j in range(n_patients)))),
            e_dual=np.sqrt(coef.size + sum(x[j].size
                                           for j in range(n_patients))) * tol +
            rtol * rho * (np.sqrt(
                squared_norm(u_1) +
                sum(squared_norm(u[j]) for j in range(n_patients)))))

        w_1_old = w_1.copy()
        x_old = [x[j].copy() for j in range(n_patients)]

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual and iteration_ > 1:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u = [u[j] * (rho / rho_new) for j in range(n_patients)]
        u_1 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [alpha, coef]
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #11
0
def time_graphical_lasso(
    emp_cov,
    alpha=0.01,
    rho=1,
    beta=1,
    max_iter=100,
    n_samples=None,
    verbose=False,
    psi="laplacian",
    tol=1e-4,
    rtol=1e-4,
    return_history=False,
    return_n_iter=True,
    mode="admm",
    compute_objective=True,
    stop_at=None,
    stop_when=1e-4,
    update_rho_options=None,
    init="empirical",
):
    """Time-varying graphical lasso solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T -n_i log_likelihood(S_i, K_i) + alpha*||K_i||_{od,1}
            + beta sum_{i=2}^T Psi(K_i - K_{i-1})

    where S_i = (1/n_i) X_i^T \times X_i is the empirical covariance of data
    matrix X (training observations by features).

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Empirical covariance of data.
    alpha, beta : float, optional
        Regularisation parameter.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    n_samples : ndarray
        Number of samples available for each time point.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    return_n_iter : bool, optional
        Return the number of iteration before convergence.
    verbose : bool, default False
        Print info at each iteration.
    update_rho_options : dict, optional
        Arguments for the rho update.
        See regain.update_rules.update_rho function for more information.
    compute_objective : bool, default True
        Choose to compute the objective value.
    init : {'empirical', 'zero', ndarray}
        Choose how to initialize the precision matrix, with the inverse
        empirical covariance, zero matrix or precomputed.

    Returns
    -------
    K : numpy.array, 3-dimensional (T x d x d)
        Solution to the problem for each time t=1...T .
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)

    Z_0 = init_precision(emp_cov, mode=init)
    Z_1 = Z_0.copy()[:-1]  # np.zeros_like(emp_cov)[:-1]
    Z_2 = Z_0.copy()[1:]  # np.zeros_like(emp_cov)[1:]

    U_0 = np.zeros_like(Z_0)
    U_1 = np.zeros_like(Z_1)
    U_2 = np.zeros_like(Z_2)

    Z_0_old = np.zeros_like(Z_0)
    Z_1_old = np.zeros_like(Z_1)
    Z_2_old = np.zeros_like(Z_2)

    # divisor for consensus variables, accounting for two less matrices
    divisor = np.full(emp_cov.shape[0], 3, dtype=float)
    divisor[0] -= 1
    divisor[-1] -= 1

    if n_samples is None:
        n_samples = np.ones(emp_cov.shape[0])

    checks = [convergence(obj=objective(n_samples, emp_cov, Z_0, Z_0, Z_1, Z_2, alpha, beta, psi))]
    for iteration_ in range(max_iter):
        # update K
        A = Z_0 - U_0
        A[:-1] += Z_1 - U_1
        A[1:] += Z_2 - U_2
        A /= divisor[:, None, None]
        # soft_thresholding_ = partial(soft_thresholding, lamda=alpha / rho)
        # K = np.array(map(soft_thresholding_, A))
        A += A.transpose(0, 2, 1)
        A /= 2.0

        A *= -rho * divisor[:, None, None] / n_samples[:, None, None]
        A += emp_cov

        K = np.array([prox_logdet(a, lamda=ni / (rho * div)) for a, div, ni in zip(A, divisor, n_samples)])

        # update Z_0
        A = K + U_0
        A += A.transpose(0, 2, 1)
        A /= 2.0
        Z_0 = soft_thresholding(A, lamda=alpha / rho)

        # other Zs
        A_1 = K[:-1] + U_1
        A_2 = K[1:] + U_2
        if not psi_node_penalty:
            prox_e = prox_psi(A_2 - A_1, lamda=2.0 * beta / rho)
            Z_1 = 0.5 * (A_1 + A_2 - prox_e)
            Z_2 = 0.5 * (A_1 + A_2 + prox_e)
        else:
            Z_1, Z_2 = prox_psi(
                np.concatenate((A_1, A_2), axis=1),
                lamda=0.5 * beta / rho,
                rho=rho,
                tol=tol,
                rtol=rtol,
                max_iter=max_iter,
            )

        # update residuals
        U_0 += K - Z_0
        U_1 += K[:-1] - Z_1
        U_2 += K[1:] - Z_2

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(squared_norm(K - Z_0) + squared_norm(K[:-1] - Z_1) + squared_norm(K[1:] - Z_2))

        snorm = rho * np.sqrt(squared_norm(Z_0 - Z_0_old) + squared_norm(Z_1 - Z_1_old) + squared_norm(Z_2 - Z_2_old))

        obj = objective(n_samples, emp_cov, Z_0, K, Z_1, Z_2, alpha, beta, psi) if compute_objective else np.nan

        # if np.isinf(obj):
        #     Z_0 = Z_0_old
        #     break

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(K.size + 2 * Z_1.size) * tol
            + rtol
            * max(
                np.sqrt(squared_norm(Z_0) + squared_norm(Z_1) + squared_norm(Z_2)),
                np.sqrt(squared_norm(K) + squared_norm(K[:-1]) + squared_norm(K[1:])),
            ),
            e_dual=np.sqrt(K.size + 2 * Z_1.size) * tol
            + rtol * rho * np.sqrt(squared_norm(U_0) + squared_norm(U_1) + squared_norm(U_2)),
            # precision=Z_0.copy()
        )
        Z_0_old = Z_0.copy()
        Z_1_old = Z_1.copy()
        Z_2_old = Z_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f," "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if stop_at is not None:
            if abs(check.obj - stop_at) / abs(stop_at) < stop_when:
                break

        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho, rnorm, snorm, iteration=iteration_, **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        U_0 *= rho / rho_new
        U_1 *= rho / rho_new
        U_2 *= rho / rho_new
        rho = rho_new

        # assert is_pos_def(Z_0)
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = np.array([linalg.pinvh(x) for x in Z_0])
    return_list = [Z_0, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_ + 1)
    return return_list
コード例 #12
0
def enet_kernel_learning_admm(K,
                              y,
                              lamda=0.01,
                              beta=0.01,
                              rho=1.,
                              max_iter=100,
                              verbose=0,
                              rtol=1e-4,
                              tol=1e-4,
                              return_n_iter=True,
                              update_rho_options=None):
    """Elastic Net kernel learning.

    Solve the following problem via ADMM:
        min sum_{i=1}^p 1/2 ||alpha_i * w * K_i - y_i||^2 + lamda ||w||_1 +
        + beta||w||_2^2
    """
    n_patients = len(K)
    n_kernels = len(K[0])
    coef = np.ones(n_kernels)
    u_1 = np.zeros(n_kernels)
    u_2 = np.zeros(n_kernels)
    w_1 = np.zeros(n_kernels)
    w_2 = np.zeros(n_kernels)

    w_1_old = w_1.copy()
    w_2_old = w_2.copy()

    checks = []
    for iteration_ in range(max_iter):
        # update alpha
        # solve (AtA + 2I)^-1 (Aty) with A = wK
        A = [K[j].T.dot(coef) for j in range(n_patients)]
        KK = [A[j].dot(A[j].T) for j in range(n_patients)]
        yy = [y[j].dot(A[j]) for j in range(n_patients)]

        alpha = [
            _solve_cholesky_kernel(KK[j], yy[j][..., None], 2).ravel()
            for j in range(n_patients)
        ]
        # alpha = [_solve_cholesky_kernel(
        #     K_dot_coef[j], y[j][..., None], 0).ravel() for j in range(n_patients)]

        w_1 = soft_thresholding(coef + u_1, lamda / rho)
        w_2 = prox_laplacian(coef + u_2, beta / rho)

        # equivalent to alpha_dot_K
        # solve (sum(AtA) + 2*rho I)^-1 (sum(Aty) + rho(w1+w2-u1-u2))
        # with A = K * alpha
        A = [K[j].dot(alpha[j]) for j in range(n_patients)]
        KK = sum(A[j].dot(A[j].T) for j in range(n_patients))
        yy = sum(y[j].dot(A[j].T) for j in range(n_patients))
        yy += rho * (w_1 + w_2 - u_1 - u_2)

        coef = _solve_cholesky_kernel(KK, yy[..., None], 2 * rho).ravel()

        # update residuals
        u_1 += coef - w_1
        u_2 += coef - w_2

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(squared_norm(coef - w_1) + squared_norm(coef - w_2))
        snorm = rho * np.sqrt(
            squared_norm(w_1 - w_1_old) + squared_norm(w_2 - w_2_old))

        obj = objective_admm(K, y, alpha, lamda, beta, coef, w_1, w_2)

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(2 * coef.size) * tol +
            rtol * max(np.sqrt(squared_norm(coef) + squared_norm(coef)),
                       np.sqrt(squared_norm(w_1) + squared_norm(w_2))),
            e_dual=np.sqrt(2 * coef.size) * tol + rtol * rho *
            (np.sqrt(squared_norm(u_1) + squared_norm(u_2))))

        w_1_old = w_1.copy()
        w_2_old = w_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check)

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual and iteration_ > 1:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u_1 *= rho / rho_new
        u_2 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [alpha, coef]
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #13
0
def graphical_lasso(
    emp_cov,
    alpha=0.01,
    rho=1,
    over_relax=1,
    max_iter=100,
    verbose=False,
    tol=1e-4,
    rtol=1e-4,
    return_history=False,
    return_n_iter=True,
    update_rho_options=None,
    compute_objective=True,
    init="empirical",
):
    r"""Graphical lasso solver via ADMM.

    Solves the following problem:
        minimize  trace(S*K) - log det K + alpha ||K||_{od,1}

    where S = (1/n) X^T \times X is the empirical covariance of the data
    matrix X (training observations by features).

    Parameters
    ----------
    emp_cov : array-like
        Empirical covariance matrix.
    alpha : float, optional
        Regularisation parameter.
    rho : float, optional
        Augmented Lagrangian parameter.
    over_relax : float, optional
        Over-relaxation parameter (typically between 1.0 and 1.8).
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    return_n_iter : bool, optional
        Return the number of iteration before convergence.
    verbose : bool, default False
        Print info at each iteration.
    update_rho_options : dict, optional
        Arguments for the rho update.
        See regain.update_rules.update_rho function for more information.
    compute_objective : bool, default True
        Choose to compute the objective value.
    init : {'empirical', 'zeros', ndarray}, default 'empirical'
        How to initialise the inverse covariance matrix. Default is take
        the empirical covariance and inverting it.

    Returns
    -------
    precision_ : numpy.array, 2-dimensional
        Solution to the problem.
    covariance_ : np.array, 2 dimensional
        Empirical covariance matrix.
    n_iter_ : int
        If return_n_iter, returns the number of iterations before convergence.
    history_ : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    Z = init_precision(emp_cov, mode=init)
    U = np.zeros_like(emp_cov)
    Z_old = np.zeros_like(Z)

    checks = []
    for iteration_ in range(max_iter):
        # x-update
        A = Z - U
        A += A.T
        A /= 2.0
        K = prox_logdet(emp_cov - rho * A, lamda=1.0 / rho)

        # z-update with relaxation
        K_hat = over_relax * K - (1 - over_relax) * Z
        Z = soft_thresholding_od(K_hat + U, lamda=alpha / rho)

        # update residuals
        U += K_hat - Z

        # diagnostics, reporting, termination checks
        obj = objective(emp_cov, K, Z, alpha) if compute_objective else np.nan
        rnorm = np.linalg.norm(K - Z, "fro")
        snorm = rho * np.linalg.norm(Z - Z_old, "fro")
        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(K.size) * tol +
            rtol * max(np.linalg.norm(K, "fro"), np.linalg.norm(Z, "fro")),
            e_dual=np.sqrt(K.size) * tol + rtol * rho * np.linalg.norm(U),
        )

        Z_old = Z.copy()
        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        U *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    return_list = [Z, emp_cov]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #14
0
def kernel_time_graphical_lasso(
    emp_cov,
    alpha=0.01,
    rho=1,
    kernel=None,
    max_iter=100,
    n_samples=None,
    verbose=False,
    psi="laplacian",
    tol=1e-4,
    rtol=1e-4,
    return_history=False,
    return_n_iter=True,
    mode="admm",
    update_rho_options=None,
    compute_objective=True,
    stop_at=None,
    stop_when=1e-4,
    init="empirical",
):
    """Time-varying graphical lasso solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T -n_i log_likelihood(K_i-L_i) + alpha ||K_i||_{od,1}
            + sum_{s>t}^T k_psi(s,t) Psi(K_s - K_t)

    where S is the empirical covariance of the data
    matrix D (training observations by features).

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Empirical covariance of data.
    alpha, beta : float, optional
        Regularisation parameter.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    init : {'empirical', 'zeros', ndarray}, default 'empirical'
        How to initialise the inverse covariance matrix. Default is take
        the empirical covariance and inverting it.

    Returns
    -------
    X : numpy.array, 2-dimensional
        Solution to the problem.
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)
    n_times, _, n_features = emp_cov.shape

    if kernel is None:
        kernel = np.eye(n_times)

    Z_0 = init_precision(emp_cov, mode=init)
    U_0 = np.zeros_like(Z_0)
    Z_0_old = np.zeros_like(Z_0)

    Z_M, Z_M_old = {}, {}
    U_M = {}
    for m in range(1, n_times):
        # all possible markovians jumps
        Z_L = Z_0.copy()[:-m]
        Z_R = Z_0.copy()[m:]
        Z_M[m] = (Z_L, Z_R)

        U_L = np.zeros_like(Z_L)
        U_R = np.zeros_like(Z_R)
        U_M[m] = (U_L, U_R)

        Z_L_old = np.zeros_like(Z_L)
        Z_R_old = np.zeros_like(Z_R)
        Z_M_old[m] = (Z_L_old, Z_R_old)

    if n_samples is None:
        n_samples = np.ones(n_times)

    checks = [
        convergence(obj=objective(n_samples, emp_cov, Z_0, Z_0, Z_M, alpha,
                                  kernel, psi))
    ]
    for iteration_ in range(max_iter):
        # update K
        A = Z_0 - U_0
        for m in range(1, n_times):
            A[:-m] += Z_M[m][0] - U_M[m][0]
            A[m:] += Z_M[m][1] - U_M[m][1]

        A /= n_times
        # soft_thresholding_ = partial(soft_thresholding, lamda=alpha / rho)
        # K = np.array(map(soft_thresholding_, A))
        A += A.transpose(0, 2, 1)
        A /= 2.0

        A *= -rho * n_times / n_samples[:, None, None]
        A += emp_cov

        K = np.array([
            prox_logdet(a, lamda=ni / (rho * n_times))
            for a, ni in zip(A, n_samples)
        ])

        # update Z_0
        A = K + U_0
        A += A.transpose(0, 2, 1)
        A /= 2.0
        Z_0 = soft_thresholding(A, lamda=alpha / rho)

        # update residuals
        U_0 += K - Z_0

        # other Zs
        for m in range(1, n_times):
            U_L, U_R = U_M[m]
            A_L = K[:-m] + U_L
            A_R = K[m:] + U_R
            if not psi_node_penalty:
                prox_e = prox_psi(A_R - A_L,
                                  lamda=2.0 *
                                  np.diag(kernel, m)[:, None, None] / rho)
                Z_L = 0.5 * (A_L + A_R - prox_e)
                Z_R = 0.5 * (A_L + A_R + prox_e)
            else:
                Z_L, Z_R = prox_psi(
                    np.concatenate((A_L, A_R), axis=1),
                    lamda=0.5 * np.diag(kernel, m)[:, None, None] / rho,
                    rho=rho,
                    tol=tol,
                    rtol=rtol,
                    max_iter=max_iter,
                )
            Z_M[m] = (Z_L, Z_R)

            # update other residuals
            U_L += K[:-m] - Z_L
            U_R += K[m:] - Z_R

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(K - Z_0) + sum(
                squared_norm(K[:-m] - Z_M[m][0]) +
                squared_norm(K[m:] - Z_M[m][1]) for m in range(1, n_times)))

        snorm = rho * np.sqrt(
            squared_norm(Z_0 - Z_0_old) + sum(
                squared_norm(Z_M[m][0] - Z_M_old[m][0]) +
                squared_norm(Z_M[m][1] - Z_M_old[m][1])
                for m in range(1, n_times)))

        obj = objective(n_samples, emp_cov, Z_0, K, Z_M, alpha, kernel,
                        psi) if compute_objective else np.nan

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=n_features * n_times * tol + rtol * max(
                np.sqrt(
                    squared_norm(Z_0) + sum(
                        squared_norm(Z_M[m][0]) + squared_norm(Z_M[m][1])
                        for m in range(1, n_times))),
                np.sqrt(
                    squared_norm(K) + sum(
                        squared_norm(K[:-m]) + squared_norm(K[m:])
                        for m in range(1, n_times))),
            ),
            e_dual=n_features * n_times * tol + rtol * rho * np.sqrt(
                squared_norm(U_0) + sum(
                    squared_norm(U_M[m][0]) + squared_norm(U_M[m][1])
                    for m in range(1, n_times))),
        )
        Z_0_old = Z_0.copy()
        for m in range(1, n_times):
            Z_M_old[m] = (Z_M[m][0].copy(), Z_M[m][1].copy())

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if stop_at is not None:
            if abs(check.obj - stop_at) / abs(stop_at) < stop_when:
                break

        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        U_0 *= rho / rho_new
        for m in range(1, n_times):
            U_L, U_R = U_M[m]
            U_L *= rho / rho_new
            U_R *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = np.array([linalg.pinvh(x) for x in Z_0])
    return_list = [Z_0, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_ + 1)
    return return_list
コード例 #15
0
def latent_time_graphical_lasso(emp_cov,
                                alpha=0.01,
                                tau=1.,
                                rho=1.,
                                beta=1.,
                                eta=1.,
                                max_iter=100,
                                n_samples=None,
                                verbose=False,
                                psi='laplacian',
                                phi='laplacian',
                                mode='admm',
                                tol=1e-4,
                                rtol=1e-4,
                                return_history=False,
                                return_n_iter=True,
                                update_rho_options=None,
                                compute_objective=True,
                                init='empirical'):
    r"""Latent variable time-varying graphical lasso solver.

    Solves the following problem via ADMM:
      min sum_{i=1}^T -n_i log_likelihood(S_i, K_i-L_i) + alpha ||K_i||_{od,1}
          + tau ||L_i||_*
          + beta sum_{i=2}^T Psi(K_i - K_{i-1})
          + eta sum_{i=2}^T Phi(L_i - L_{i-1})

    where S_i = (1/n_i) X_i^T \times X_i is the empirical covariance of data
    matrix X (training observations by features).

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Empirical covariance of data.
    alpha, tau, beta, eta : float, optional
        Regularisation parameters.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    n_samples : ndarray
        Number of samples available for each time point.
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    return_n_iter : bool, optional
        Return the number of iteration before convergence.
    verbose : bool, default False
        Print info at each iteration.
    update_rho_options : dict, optional
        Arguments for the rho update.
        See regain.update_rules.update_rho function for more information.
    compute_objective : bool, default True
        Choose to compute the objective value.
    init : {'empirical', 'zeros', ndarray}, default 'empirical'
        How to initialise the inverse covariance matrix. Default is take
        the empirical covariance and inverting it.

    Returns
    -------
    K, L : numpy.array, 3-dimensional (T x d x d)
        Solution to the problem for each time t=1...T .
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)
    phi, prox_phi, phi_node_penalty = check_norm_prox(phi)

    Z_0 = init_precision(emp_cov, mode=init)
    Z_1 = Z_0.copy()[:-1]
    Z_2 = Z_0.copy()[1:]
    W_0 = np.zeros_like(Z_0)
    W_1 = np.zeros_like(Z_1)
    W_2 = np.zeros_like(Z_2)

    X_0 = np.zeros_like(Z_0)
    X_1 = np.zeros_like(Z_1)
    X_2 = np.zeros_like(Z_2)
    U_1 = np.zeros_like(W_1)
    U_2 = np.zeros_like(W_2)

    R_old = np.zeros_like(Z_0)
    Z_1_old = np.zeros_like(Z_1)
    Z_2_old = np.zeros_like(Z_2)
    W_1_old = np.zeros_like(W_1)
    W_2_old = np.zeros_like(W_2)

    # divisor for consensus variables, accounting for two less matrices
    divisor = np.full(emp_cov.shape[0], 3, dtype=float)
    divisor[0] -= 1
    divisor[-1] -= 1

    if n_samples is None:
        n_samples = np.ones(emp_cov.shape[0])

    checks = []
    for iteration_ in range(max_iter):
        # update R
        A = Z_0 - W_0 - X_0
        A += A.transpose(0, 2, 1)
        A /= 2.
        A *= -rho / n_samples[:, None, None]
        A += emp_cov
        # A = emp_cov / rho - A

        R = np.array(
            [prox_logdet(a, lamda=ni / rho) for a, ni in zip(A, n_samples)])

        # update Z_0
        A = R + W_0 + X_0
        A[:-1] += Z_1 - X_1
        A[1:] += Z_2 - X_2
        A /= divisor[:, None, None]
        # soft_thresholding_ = partial(soft_thresholding, lamda=alpha / rho)
        # Z_0 = np.array(map(soft_thresholding_, A))
        Z_0 = soft_thresholding(A,
                                lamda=alpha / (rho * divisor[:, None, None]))

        # update Z_1, Z_2
        A_1 = Z_0[:-1] + X_1
        A_2 = Z_0[1:] + X_2
        if not psi_node_penalty:
            prox_e = prox_psi(A_2 - A_1, lamda=2. * beta / rho)
            Z_1 = .5 * (A_1 + A_2 - prox_e)
            Z_2 = .5 * (A_1 + A_2 + prox_e)
        else:
            Z_1, Z_2 = prox_psi(np.concatenate((A_1, A_2), axis=1),
                                lamda=.5 * beta / rho,
                                rho=rho,
                                tol=tol,
                                rtol=rtol,
                                max_iter=max_iter)

        # update W_0
        A = Z_0 - R - X_0
        A[:-1] += W_1 - U_1
        A[1:] += W_2 - U_2
        A /= divisor[:, None, None]
        A += A.transpose(0, 2, 1)
        A /= 2.

        W_0 = np.array([
            prox_trace_indicator(a, lamda=tau / (rho * div))
            for a, div in zip(A, divisor)
        ])

        # update W_1, W_2
        A_1 = W_0[:-1] + U_1
        A_2 = W_0[1:] + U_2
        if not phi_node_penalty:
            prox_e = prox_phi(A_2 - A_1, lamda=2. * eta / rho)
            W_1 = .5 * (A_1 + A_2 - prox_e)
            W_2 = .5 * (A_1 + A_2 + prox_e)
        else:
            W_1, W_2 = prox_phi(np.concatenate((A_1, A_2), axis=1),
                                lamda=.5 * eta / rho,
                                rho=rho,
                                tol=tol,
                                rtol=rtol,
                                max_iter=max_iter)

        # update residuals
        X_0 += R - Z_0 + W_0
        X_1 += Z_0[:-1] - Z_1
        X_2 += Z_0[1:] - Z_2
        U_1 += W_0[:-1] - W_1
        U_2 += W_0[1:] - W_2

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            squared_norm(R - Z_0 + W_0) + squared_norm(Z_0[:-1] - Z_1) +
            squared_norm(Z_0[1:] - Z_2) + squared_norm(W_0[:-1] - W_1) +
            squared_norm(W_0[1:] - W_2))

        snorm = rho * np.sqrt(
            squared_norm(R - R_old) + squared_norm(Z_1 - Z_1_old) +
            squared_norm(Z_2 - Z_2_old) + squared_norm(W_1 - W_1_old) +
            squared_norm(W_2 - W_2_old))

        obj = objective(emp_cov, n_samples, R, Z_0, Z_1, Z_2, W_0, W_1, W_2,
                        alpha, tau, beta, eta, psi, phi) \
            if compute_objective else np.nan

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(R.size + 4 * Z_1.size) * tol + rtol * max(
                np.sqrt(
                    squared_norm(R) + squared_norm(Z_1) + squared_norm(Z_2) +
                    squared_norm(W_1) + squared_norm(W_2)),
                np.sqrt(
                    squared_norm(Z_0 - W_0) + squared_norm(Z_0[:-1]) +
                    squared_norm(Z_0[1:]) + squared_norm(W_0[:-1]) +
                    squared_norm(W_0[1:]))),
            e_dual=np.sqrt(R.size + 4 * Z_1.size) * tol + rtol * rho *
            (np.sqrt(
                squared_norm(X_0) + squared_norm(X_1) + squared_norm(X_2) +
                squared_norm(U_1) + squared_norm(U_2))))

        R_old = R.copy()
        Z_1_old = Z_1.copy()
        Z_2_old = Z_2.copy()
        W_1_old = W_1.copy()
        W_2_old = W_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        X_0 *= rho / rho_new
        X_1 *= rho / rho_new
        X_2 *= rho / rho_new
        U_1 *= rho / rho_new
        U_2 *= rho / rho_new
        rho = rho_new
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = np.array([linalg.pinvh(x) for x in Z_0])
    return_list = [Z_0, W_0, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_)
    return return_list
コード例 #16
0
def equality_time_graphical_lasso(
        S,
        K_init,
        max_iter,
        loss,
        C,
        rho,  # n_samples=None, 
        psi,
        gamma,
        tol,
        rtol,
        verbose,
        return_history,
        return_n_iter,
        mode,
        compute_objective,
        stop_at,
        stop_when,
        update_rho_options,
        init):
    """Equality constrained time-varying graphical LASSO solver.

    Solves the following problem via ADMM:
        min sum_{i=1}^T ||K_i||_{od,1} + beta sum_{i=2}^T Psi(K_i - K_{i-1})
        s.t. objective = c_i for i = 1, ..., T

    where S_i = (1/n_i) X_i^T X_i is the empirical covariance of data
    matrix X (training observations by features).

    Parameters
    ----------
    emp_cov : ndarray, shape (n_features, n_features)
        Empirical covariance of data.
    rho : float, optional
        Augmented Lagrangian parameter.
    max_iter : int, optional
        Maximum number of iterations.
    n_samples : ndarray
        Number of samples available for each time point.
    gamma: float, optional
        Kernel parameter when psi is chosen to be 'kernel'.
    constrained_to: float or ndarray, shape (time steps)
        Log likelihood constraints for K_i
    tol : float, optional
        Absolute tolerance for convergence.
    rtol : float, optional
        Relative tolerance for convergence.
    return_history : bool, optional
        Return the history of computed values.
    return_n_iter : bool, optional
        Return the number of iteration before convergence.
    verbose : bool, default False
        Print info at each iteration.
    update_rho_options : dict, optional
        Arguments for the rho update.
        See regain.update_rules.update_rho function for more information.
    compute_objective : bool, default True
        Choose to compute the objective value.
    init : {'empirical', 'zero', ndarray}
        Choose how to initialize the precision matrix, with the inverse
        empirical covariance, zero matrix or precomputed.

    Returns
    -------
    K : numpy.array, 3-dimensional (T x d x d)
        Solution to the problem for each time t=1...T .
    history : list
        If return_history, then also a structure that contains the
        objective value, the primal and dual residual norms, and tolerances
        for the primal and dual residual norms at each iteration.

    """
    psi, prox_psi, psi_node_penalty = check_norm_prox(psi)

    psi_name = psi.__name__

    if loss == 'LL':
        loss_function = neg_logl
    else:
        loss_function = dtrace

    K = K_init
    Z_0 = K.copy()
    Z_1 = K.copy()[:-1]
    Z_2 = K.copy()[1:]

    u = np.zeros((S.shape[0]))
    U_0 = np.zeros_like(Z_0)
    U_1 = np.zeros_like(Z_1)
    U_2 = np.zeros_like(Z_2)

    Z_0_old = np.zeros_like(Z_0)
    Z_1_old = np.zeros_like(Z_1)
    Z_2_old = np.zeros_like(Z_2)

    I = np.eye(S.shape[1])

    checks = [
        convergence(
            obj=equality_objective(loss_function, S, K, C, Z_0, Z_1, Z_2, psi))
    ]

    for iteration_ in range(max_iter):
        # update K
        A_K = U_0 - Z_0
        A_K[:-1] += Z_1 - U_1
        A_K[1:] += Z_2 - U_2
        A_K += A_K.transpose(0, 2, 1)
        A_K /= 2.

        K = soft_thresholding_od(A_K, lamda=1. / rho)

        # update Z_0
        residual_loss_constraint_u = loss_gen(loss_function, S, Z_0) - C + u

        A_Z = K + U_0
        A_Z += A_Z.transpose(0, 2, 1)
        A_Z /= 2.

        if loss_function == neg_logl:
            A_Z -= residual_loss_constraint_u[:, None, None] * S
            Z_0 = np.array([
                prox_logdet_constrained(_A, _a, I)
                for _A, _a in zip(A_Z, residual_loss_constraint_u)
            ])
        elif loss_function == dtrace:
            Z_0 = np.array([
                prox_dtrace_constrained(_A, _S, _a, I)
                for _A, _S, _a in zip(A_Z, S, residual_loss_constraint_u)
            ])

        # other Zs
        A_1 = K[:-1] + U_1
        A_2 = K[1:] + U_2
        if not psi_node_penalty:
            prox_e = prox_psi(A_2 - A_1, lamda=2. / rho)
            Z_1 = .5 * (A_1 + A_2 - prox_e)
            Z_2 = .5 * (A_1 + A_2 + prox_e)
        else:
            Z_1, Z_2 = prox_psi(np.concatenate((A_1, A_2), axis=1),
                                lamda=.5 / rho,
                                rho=rho,
                                tol=tol,
                                rtol=rtol,
                                max_iter=max_iter)

        # update residuals
        residual_loss_constraint = loss_gen(loss_function, S, Z_0) - C
        u += residual_loss_constraint
        U_0 += K - Z_0
        U_1 += K[:-1] - Z_1
        U_2 += K[1:] - Z_2

        print(residual_loss_constraint)

        # diagnostics, reporting, termination checks
        rnorm = np.sqrt(
            np.sum(residual_loss_constraint**2) + squared_norm(K - Z_0) +
            squared_norm(K[:-1] - Z_1) + squared_norm(K[1:] - Z_2))

        snorm = rho * np.sqrt(
            squared_norm(Z_0 - Z_0_old) + squared_norm(Z_1 - Z_1_old) +
            squared_norm(Z_2 - Z_2_old))

        obj = equality_objective(loss_function, S, K, C, Z_0, Z_1, Z_2,
                                 psi) if compute_objective else np.nan

        check = convergence(
            obj=obj,
            rnorm=rnorm,
            snorm=snorm,
            e_pri=np.sqrt(Z_0.size + 2 * Z_1.size + S.shape[0]) * tol +
            rtol * max(
                np.sqrt(
                    np.sum(C**2) + squared_norm(Z_0) + squared_norm(Z_1) +
                    squared_norm(Z_2)),
                np.sqrt(
                    np.sum(
                        (residual_loss_constraint + C)**2) + squared_norm(K) +
                    squared_norm(K[:-1]) + squared_norm(K[1:]))),
            e_dual=np.sqrt(Z_0.size + 2 * Z_1.size) * tol + rtol * rho *
            np.sqrt(squared_norm(U_0) + squared_norm(U_1) + squared_norm(U_2)),
        )
        Z_0_old = Z_0.copy()
        Z_1_old = Z_1.copy()
        Z_2_old = Z_2.copy()

        if verbose:
            print("obj: %.4f, rnorm: %.4f, snorm: %.4f,"
                  "eps_pri: %.4f, eps_dual: %.4f" % check[:5])

        checks.append(check)
        if stop_at is not None:
            if abs(check.obj - stop_at) / abs(stop_at) < stop_when:
                break

        if check.rnorm <= check.e_pri and check.snorm <= check.e_dual:
            break

        rho_new = update_rho(rho,
                             rnorm,
                             snorm,
                             iteration=iteration_,
                             **(update_rho_options or {}))
        # scaled dual variables should be also rescaled
        u *= rho / rho_new
        U_0 *= rho / rho_new
        U_1 *= rho / rho_new
        U_2 *= rho / rho_new
        rho = rho_new

        #assert is_pos_def(Z_0)
    else:
        warnings.warn("Objective did not converge.")

    covariance_ = np.array([linalg.pinvh(x) for x in K])
    return_list = [K, covariance_]
    if return_history:
        return_list.append(checks)
    if return_n_iter:
        return_list.append(iteration_ + 1)
    return return_list