def _azp_connected_component(self, adj, initial_clustering, attr): """ Implementation of the basic tabu version of the AZP algorithm (refer to [OR1995]_) for a spatially connected set of areas (i.e. for every area there is a path to every other area). Parameters ---------- adj : :class:`scipy.sparse.csr_matrix` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. initial_clustering : :class:`numpy.ndarray` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. attr : :class:`numpy.ndarray` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. Returns ------- labels : :class:`numpy.ndarray` Refer to the return value in :meth:`AZP._azp_connected_component`. """ self.reset_tabu() # if there is only one region in the initial solution, just return it. distinct_regions = list(np.unique(initial_clustering)) if len(distinct_regions) == 1: return initial_clustering # step 2: make a list of the M regions labels = initial_clustering visited = [] stop = False while True: # added termination condition (not in Openshaw & Rao (1995)) label_tup = tuple(labels) if visited.count(label_tup) >= self.reps_before_termination: stop = True visited.append(label_tup) # step 1 Find the global best move that is not prohibited or tabu. # find possible moves (globally) best_move = None best_objval_diff = float("inf") for area in range(labels.shape[0]): old_region = labels[area] sub_adj = sub_adj_matrix( adj, np.where(labels == old_region)[0], wo_nodes=area) # moving the area must not destroy spatial contiguity in donor # region and if area is alone in its region, it must stay: if is_connected(sub_adj) and count(labels, old_region) > 1: for neigh in neighbors(adj, area): new_region = labels[neigh] if new_region != old_region: possible_move = Move(area, old_region, new_region) if possible_move not in self.tabu: objval_diff = self.objective_func.update( possible_move.area, possible_move.new_region, labels, attr) if objval_diff < best_objval_diff: best_move = possible_move best_objval_diff = objval_diff # step 2: Make this move if it is an improvement or equivalet in # value. if best_move is not None and best_objval_diff <= 0: self._make_move(best_move.area, best_move.new_region, labels) else: # step 3: if no improving move can be made, then see if a tabu # move can be made which improves on the current local best # (termed an aspiration move) improving_tabus = [ move for move in self.tabu if labels[move.area] == move.old_region and self.objective_func.update(move.area, move.new_region, labels, attr) < 0 ] if improving_tabus: aspiration_move = random_element_from(improving_tabus) self._make_move(aspiration_move.area, aspiration_move.new_region, labels) else: # step 4: If there is no improving move and no aspirational # move, then make the best move even if it is nonimproving # (that is, results in a worse value of the objective # function). if stop: break if best_move is not None: self._make_move(best_move.area, best_move.new_region, labels) return labels
def _azp_connected_component(self, adj, initial_labels, attr): """ Implementation of the reactive tabu version of the AZP algorithm (refer to [OR1995]_) for a spatially connected set of areas (i.e. for every area there is a path to every other area). Parameters ---------- adj : :class:`scipy.sparse.csr_matrix` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. initial_labels : :class:`numpy.ndarray` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. attr : :class:`numpy.ndarray` Refer to the corresponding argument in :meth:`AZP._azp_connected_component`. Returns ------- labels : :class:`numpy.ndarray` Refer to the return value in :meth:`AZP._azp_connected_component`. """ self.reset_tabu(1) # if there is only one region in the initial solution, just return it. distinct_regions = list(np.unique(initial_labels)) if len(distinct_regions) == 1: return initial_labels # step 2: make a list of the M regions labels = initial_labels it_since_tabu_len_changed = 0 obj_val_start = float("inf") # step 12: Repeat steps 3-11 until either no further improvements are # made or a maximum number of iterations are exceeded. for it in range(self.maxit): obj_val_end = self.objective_func(labels, attr) if not obj_val_end < obj_val_start: break # step 12 obj_val_start = obj_val_end it_since_tabu_len_changed += 1 # step 3: Define the list of all possible moves that are not tabu # and retain regional connectivity. possible_moves = [] for area in range(labels.shape[0]): old_region = labels[area] sub_adj = sub_adj_matrix( adj, np.where(labels == old_region)[0], wo_nodes=area) # moving the area must not destroy spatial contiguity in donor # region and if area is alone in its region, it must stay: if is_connected(sub_adj) and count(labels, old_region) > 1: for neigh in neighbors(adj, area): new_region = labels[neigh] if new_region != old_region: possible_move = Move(area, old_region, new_region) if possible_move not in self.tabu: possible_moves.append(possible_move) # step 4: Find the best nontabu move. best_move = None best_move_index = None best_objval_diff = float("inf") for i, move in enumerate(possible_moves): obj_val_diff = self.objective_func.update( move.area, move.new_region, labels, attr) if obj_val_diff < best_objval_diff: best_move_index, best_move = i, move best_objval_diff = obj_val_diff # step 5: Make the move. Update the tabu status. self._make_move(best_move.area, best_move.new_region, labels) # step 6: Look up the current zoning system in a list of all zoning # systems visited so far during the search. If not found then go # to step 10. # Sets can't be permuted so we convert our list to a set: label_tup = tuple(labels) if label_tup in self.visited: # step 7: If it is found and it has been visited more than K1 # times already and this cyclical behavior has been found on # at least K2 other occasions (involving other zones) then go # to step 11. times_visited = self.visited.count(label_tup) cycle = list(reversed(self.visited)) cycle = cycle[:cycle.index(label_tup) + 1] cycle = list(reversed(cycle)) it_until_repetition = len(cycle) if times_visited > self.k1: times_cycle_found = 0 if self.k2 > 0: for i in range(len(self.visited) - len(cycle)): if self.visited[i:i + len(cycle)] == cycle: times_cycle_found += 1 if times_cycle_found >= self.k2: break if times_cycle_found >= self.k2: # step 11: Delete all stored zoning systems and make P # random moves, P = 1 + self.avg_it_until_rep/2, and # update tabu to preclude a return to the previous # state. # we save the labels such that we can access it if # this step yields a poor solution. last_step = (11, tuple(labels)) self.visited = [] p = math.floor(1 + self.avg_it_until_rep / 2) possible_moves.pop(best_move_index) for _ in range(p): move = possible_moves.pop( random.randrange(len(possible_moves))) self._make_move(move.area, move.new_region, labels) continue # step 8: Update a moving average of the repetition # interval self.avg_it_until_rep, and increase the # prohibition period R to 1.1*R. self.rep_counter += 1 avg_it = self.avg_it_until_rep self.avg_it_until_rep = 1 / self.rep_counter * \ ((self.rep_counter-1)*avg_it + it_until_repetition) self.tabu = deque(self.tabu, 1.1 * self.tabu.maxlen) # step 9: If the number of iterations since R was last # changed exceeds self.avg_it_until_rep, then decrease R to # max(0.9*R, 1). if it_since_tabu_len_changed > self.avg_it_until_rep: new_tabu_len = max([0.9 * self.tabu.maxlen, 1]) new_tabu_len = math.floor(new_tabu_len) self.tabu = deque(self.tabu, new_tabu_len) it_since_tabu_len_changed = 0 # step 8 # step 10: Save the zoning system and go to step 12. self.visited.append(tuple(labels)) last_step = 10 if last_step == 10: try: return np.array(self.visited[-2]) except IndexError: return np.array(self.visited[-1]) # if step 11 was the last one, the result is in last_step[1] return np.array(last_step[1])
def _azp_connected_component(self, adj, initial_clustering, attr): """ Implementation of the AZP algorithm for a spatially connected set of areas (i.e. for every area there is a path to every other area). Parameters ---------- adj : :class:`scipy.sparse.csr_matrix` Adjacency matrix representing the contiguity relation. The matrix' shape is (N, N) where N denotes the number of areas in the currently considered connected component. initial_clustering : :class:`numpy.ndarray` Array of labels. Shape: (N,) where N denotes the number of areas in the currently considered connected component. attr : :class:`numpy.ndarray` Array of labels. Shape: (N, M) where N denotes the number of areas in the currently considered connected component and M denotes the number of attributes per area. Returns ------- labels : :class:`numpy.ndarray` One-dimensional array of region labels after the AZP algorithm has been performed. Only region labels of the currently considered connected component are returned. """ # if there is only one region in the initial solution, just return it. distinct_regions = list(np.unique(initial_clustering)) if len(distinct_regions) == 1: return initial_clustering distinct_regions_copy = distinct_regions.copy() # step 2: make a list of the M regions labels = initial_clustering obj_val_start = float("inf") obj_val_end = self.allow_move_strategy.objective_val region_neighbors = {} for region in distinct_regions: region_areas = set(np.where(labels == region)[0]) neighs = set() for area in region_areas: neighs.update(neighbors(adj, area)) region_neighbors[region] = neighs.difference(region_areas) del neighs # step 7: Repeat until no further improving moves are made while obj_val_end < obj_val_start: # improvement obj_val_start = float(obj_val_end) distinct_regions = distinct_regions_copy.copy() # step 6: when the list for region K is exhausted return to step 3 # and select another region and repeat steps 4-6 while distinct_regions: # step 3: select & remove any region K at random from this list recipient = pop_randomly_from(distinct_regions) while True: # step 4: identify a set of zones bordering on members of # region K that could be moved into region K without # destroying the internal contiguity of the donor region(s) candidates = [] for neigh in region_neighbors[recipient]: neigh_region = labels[neigh] sub_adj = sub_adj_matrix( adj, np.where(labels == neigh_region)[0], wo_nodes=neigh) if is_connected(sub_adj): # if area is alone in its region, it must stay if count(labels, neigh_region) > 1: candidates.append(neigh) # step 5: randomly select zones from this list until either # there is a local improvement in the current value of the # objective function or a move that is equivalently as good # as the current best. Then make the move, update the list # of candidate zones, and return to step 4 or else repeat # step 5 until the list is exhausted. while candidates: cand = pop_randomly_from(candidates) if self.allow_move_strategy(cand, recipient, labels): donor = labels[cand] make_move(cand, recipient, labels) region_neighbors[donor].add(cand) region_neighbors[recipient].discard(cand) neighs_of_cand = neighbors(adj, cand) recipient_region_areas = set( np.where(labels == recipient)[0]) region_neighbors[recipient].update(neighs_of_cand) region_neighbors[recipient].difference_update( recipient_region_areas) donor_region_areas = set( np.where(labels == donor)[0]) not_donor_neighs_anymore = set( area for area in neighs_of_cand if not any( a in donor_region_areas for a in neighbors(adj, area))) region_neighbors[donor].difference_update( not_donor_neighs_anymore) break else: break obj_val_end = float(self.allow_move_strategy.objective_val) return labels