コード例 #1
0
def extract_box(a, region=None):
    """ extract a subregion

    a        : DimArray instance
    region: lon_ll, lat_ll, lon_ur, lat_ur 
        or Region instance
    """
    # interactive drawing of a region
    if region is None:
        region = regmod.drawbox()

    # check the arguments: initialize a BoxRegion if not yet a region
    regobj = regmod.check(region)

    i, j = regobj.box_idx(a.lon, a.lat)
    return a.take({'lat': i, 'lon': j}, indexing='position')
コード例 #2
0
ファイル: transform.py プロジェクト: koenvo/dimarray
def extract_box(a, region=None):
    """ extract a subregion

    a        : DimArray instance
    region: lon_ll, lat_ll, lon_ur, lat_ur 
        or Region instance
    """
    # interactive drawing of a region
    if region is None:
        region = regmod.drawbox()

    # check the arguments: initialize a BoxRegion if not yet a region
    regobj = regmod.check(region)

    i, j = regobj.box_idx(a.lon, a.lat)
    return a.take({'lat':i, 'lon':j}, indexing='position')
コード例 #3
0
def regional_mean(a, region=None):
    """ Average along lon/lat

    input:
        - a: DimArray instance including lat, lon axis
        - region, optional: 
            [lon, lat]: Point
            [lon_ll, lat_ll, lon_ur, lat_ur]: BoxRegion
            or Region instance

    output:
        - GeoArray instance, regional average

    Notes:
    ------
    Will adjust longitude axis over [0, 360] or [-180, 180] as necessary

    Examples:
    ---------
    >>> lon = [0, 50., 100.]
    >>> lat = [0, 50.]
    >>> a = GeoArray([[1, 2, 4],[4, 5, 6]], lon=lon, lat=lat)
    >>> rm = regional_mean(a)
    >>> rm
    3.3767428905946684

    Which just weights data with cos(lat)
    >>> lon2, lat2 = np.meshgrid(lon, lat)
    >>> w = np.cos(np.radians(lat2))
    >>> rm2 = np.sum(a.values*w)/np.sum(w)  
    >>> round(rm2, 4)
    3.3767

    GeoArray detects the weights automatically with name "lat"
    >>> rm3 = a.mean() 
    >>> round(rm3,4)
    3.3767
    >>> a.mean(weights=None)
    3.6666666666666665

    Also works for multi-dimensional data shaped in any kind of order
    >>> a = a.newaxis('z',[0,1,2])
    >>> a = a.transpose(('lon','z','lat'))
    >>> regional_mean(a)
    geoarray: 3 non-null elements (0 null)
    dimensions: 'z'
    0 / z (3): 0 to 2
    array([ 3.37674289,  3.37674289,  3.37674289])
    """
    regobj = regmod.check(region)

    dims = ('lat', 'lon')

    a = GeoArray(a)  # make it a GeoArray to check lon, lat

    if not set(dims).issubset(a.dims):
        raise ValueError("does not have lon, lat axes: {}".format(a))

    # rearrange dimensions with dims first
    flatdims = [ax.name for ax in a.axes if ax.name not in dims]
    newdims = dims + tuple(flatdims)
    if a.dims != newdims:
        a = a.transpose(newdims)

    # If 2-D return a scalar
    if a.dims == ('lat', 'lon'):
        return regobj.mean(a.lon, a.lat, a.values)

    # flatten all except lat, lon, and make it the first axis
    agrp = a.group(flatdims, insert=0)
    grpaxis = agrp.axes[0]  # grouped axis

    # iterate over the first, grouped axis
    results = []
    for i in range(grpaxis.size):
        res = regobj.mean(a.lon, a.lat, agrp.values[i])
        results.append(res)

    # flat object
    grp_ave = a._constructor(results, [grpaxis])

    average = grp_ave.ungroup()  # now ungroup

    return average
コード例 #4
0
ファイル: transform.py プロジェクト: koenvo/dimarray
def regional_mean(a, region=None):
    """ Average along lon/lat

    input:
        - a: DimArray instance including lat, lon axis
        - region, optional: 
            [lon, lat]: Point
            [lon_ll, lat_ll, lon_ur, lat_ur]: BoxRegion
            or Region instance

    output:
        - GeoArray instance, regional average

    Notes:
    ------
    Will adjust longitude axis over [0, 360] or [-180, 180] as necessary

    Examples:
    ---------
    >>> lon = [0, 50., 100.]
    >>> lat = [0, 50.]
    >>> a = GeoArray([[1, 2, 4],[4, 5, 6]], lon=lon, lat=lat)
    >>> rm = regional_mean(a)
    >>> rm
    3.3767428905946684

    Which just weights data with cos(lat)
    >>> lon2, lat2 = np.meshgrid(lon, lat)
    >>> w = np.cos(np.radians(lat2))
    >>> rm2 = np.sum(a.values*w)/np.sum(w)  
    >>> round(rm2, 4)
    3.3767

    GeoArray detects the weights automatically with name "lat"
    >>> rm3 = a.mean() 
    >>> round(rm3,4)
    3.3767
    >>> a.mean(weights=None)
    3.6666666666666665

    Also works for multi-dimensional data shaped in any kind of order
    >>> a = a.newaxis('z',[0,1,2])
    >>> a = a.transpose(('lon','z','lat'))
    >>> regional_mean(a)
    geoarray: 3 non-null elements (0 null)
    dimensions: 'z'
    0 / z (3): 0 to 2
    array([ 3.37674289,  3.37674289,  3.37674289])
    """
    regobj = regmod.check(region)

    dims = ('lat','lon')

    a = GeoArray(a) # make it a GeoArray to check lon, lat 

    if not set(dims).issubset(a.dims):
        raise ValueError("does not have lon, lat axes: {}".format(a))

    # rearrange dimensions with dims first
    flatdims = [ax.name for ax in a.axes if ax.name not in dims]
    newdims = dims + tuple(flatdims)
    if a.dims != newdims:
        a = a.transpose(newdims)

    # If 2-D return a scalar
    if a.dims == ('lat', 'lon'):
        return regobj.mean(a.lon,a.lat, a.values)

    # flatten all except lat, lon, and make it the first axis
    agrp = a.group(flatdims, insert=0) 
    grpaxis = agrp.axes[0] # grouped axis
    
    # iterate over the first, grouped axis
    results = []
    for i in range(grpaxis.size):
        res = regobj.mean(a.lon,a.lat, agrp.values[i])
        results.append(res)
        
    # flat object
    grp_ave = a._constructor(results, [grpaxis])

    average = grp_ave.ungroup() # now ungroup

    return average