theta_idx - 1) * D_HEIGHT + z_idx return region_number if __name__ == "__main__": stl_base = "G:\\My Drive\\Project\\HW-9232 Registration method for edentulous" \ "\\Edentulous registration error analysis\\Typodont_scan\\Edentulous_scan\\" all_regions = [] file = stl_base + 'full_arch.txt' if os.path.isfile(file): print('read txt') full_region = Yomiread.read_csv(file, 3, -1) else: stl_file = 'full_arch.stl' print('read stl') full_region = region_points.read_regions(stl_base + stl_file, voxel_size=0.05) Yomiwrite.write_csv_matrix(stl_base + 'full_arch.txt', full_region) base = "G:\\My Drive\\Project\\HW-9232 Registration method for edentulous" \ "\\Edentulous registration error analysis\\Stage2_more_regions\\" target_measurement_file = "targets.txt" points = Yomiread.read_csv(base + target_measurement_file, 4, 10, flag=1) targets_original = points[0:4, 1:4] arch1 = edentulous_arch.Edentulous_arch(full_region, targets_original) print('angle range is', arch1.target_angle_range) print('target position is', arch1.target_origins_cylindrical[:, 1] * 180 / np.pi) # Set up simulation conditions D_ANGLE = 3
BIAS_ERROR_FLAG = 0 ORIENTATION = 1 stl_base = "G:\\My Drive\\Project\\HW-9232 Registration method for edentulous\\Edentulous registration error analysis\\Typodont_scan\\Edentulous_scan\\" all_regions = [] for i in range(5): file = stl_base + 'region_points_' + np.str(i+1) + '.txt' if os.path.isfile(file): print('read txt') individual_region = Yomiread.read_csv(file,3,-1) else: stl_file = 'Fiducial_region_' + np.str(i+1) + '.stl' print('read stl') individual_region = region_points.read_regions(stl_base + stl_file, voxel_size = 2.0) Yomiwrite.write_csv_matrix(stl_base + 'region_points_' + np.str(i + 1) + '.txt', individual_region) all_regions.append(individual_region) for i in range(len(all_regions)): value_95 = [] fiducials_new = np.copy(fiducials_original) mm = 0 for point in all_regions[i]: print('checking point ', mm + 1) fiducials_new[i,:] = point #print('fiducials are ', fiducials_new) value_95_tem = check_tre(targets_original, fiducials_new) value_95.append(value_95_tem) if np.ndim(targets_original) == 1: if (value_95_tem < THRESHOLD_0):