コード例 #1
0
    errorsFig = plt.figure()
    ax = errorsFig.add_subplot(111)
    ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.4f'))
    ax.plot(range((len(errors))), errors)
    ax.set_xlabel('Number of iterations')
    ax.set_ylabel('Cost J')
    plt.show()

    size = 100
    theta0Vals = np.linspace(-10, 10, size)
    theta1Vals = np.linspace(-2, 4, size)
    JVals = np.zeros((size, size))
    for i in range(size):
     for j in range(size):
         col = np.matrix([[theta0Vals[i]], [theta1Vals[j]]])
         JVals[i, j] = re.J(col, X, y)

    theta0Vals, theta1Vals = np.meshgrid(theta0Vals, theta1Vals)
    JVals = JVals.T
    contourSurf = plt.figure()
    ax = contourSurf.gca(projection='3d')

    ax.plot_surface(theta0Vals, theta1Vals, JVals, rstride=2, cstride=2, alpha=0.3,
                 cmap='rainbow', linewidth=0, antialiased=False)

    ax.plot(thetas[0], thetas[1], 'rx')
    ax.set_xlabel(r'$\theta_0$')
    ax.set_ylabel(r'$\theta_1$')
    ax.set_zlabel(r'$J(\theta)$')

    plt.show()
コード例 #2
0
    ax.plot(range(len(errors)), errors)
    ax.set_xlabel('Number of iterations')
    ax.set_ylabel('Cost J')

    plt.show()

    # 3D cost function
    size = 100
    theta0Vals = np.linspace(-10, 10, size)
    theta1Vals = np.linspace(-2, 4, size)
    JVals = np.zeros((size, size))
    for i in range(size):
        for j in range(size):
            col = np.matrix([[theta0Vals[i]], [theta1Vals[j]]])
            JVals[i, j] = regression.J(col, X, y)

    theta0Vals, theta1Vals = np.meshgrid(theta0Vals, theta1Vals)
    JVals = JVals.T
    contourSurf = plt.figure()
    ax = contourSurf.gca(projection='3d')

    ax.plot_surface(theta0Vals,
                    theta1Vals,
                    JVals,
                    rstride=2,
                    cstride=2,
                    alpha=0.3,
                    cmap=cm.rainbow,
                    linewidth=0,
                    antialiased=False)
コード例 #3
0
    fittingLine, = ax.plot(xCopy[:,1], yHat, color='g')

    ax.set_xlabel('Population of City in 10,000s')
    ax.set_ylabel('Profit in $10,000s')

    plt.legend([trainingSet, fittingLine], ['Training Set', 'Linear Regression'])
    plt.show()

    # 绘制能量函数的轮廓
    theta1Vals = np.linspace(min(thetas[1]), max(thetas[1]), 100)
    theta2Vals = np.linspace(min(thetas[2]), max(thetas[2]), 100)
    JVals = np.zeros((100, 100))
    for i in range(100):
        for j in range(100):
            theta = np.matrix([[0], [theta1Vals[i]], [theta2Vals[j]]])
            JVals[i,j] = regression.J(theta, X, y)
    contourFig = plt.figure()
    ax = contourFig.add_subplot(111)
    ax.contour(theta1Vals, theta2Vals, JVals, np.logspace(-2,3,20))

    plt.show()

    # 打印误差曲线
    errorsFig = plt.figure()
    ax = errorsFig.add_subplot(111)
    ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.4f'))

    ax.plot(range(len(errors)), errors)
    ax.set_xlabel('Number of iterations')
    ax.set_ylabel('Cost J')