コード例 #1
0
ファイル: k_fold_validator.py プロジェクト: dridon/aml1
def test_regression(w, test, ds): 
  # get data
  data = fl.format_inputs(test, ds)

  # predict results
  m = rg.iter2matrix(data)
  x = m.T[:-1].T
  x = rg.append_ones(x)
  y =  m.T[-1:].T

  # test error
  return rg.mse_error(x, y, w)
コード例 #2
0
ファイル: k_fold_validator.py プロジェクト: dridon/aml1
def train_grad_descent(training, params): 
  data,ds = transform_train_set(training)

  # generate regression
  m = rg.iter2matrix(data)
  x = m.T[:-1].T
  x = rg.append_ones(x)
  y =  m.T[-1:].T

  init_weight = np.ones((x.shape[1],1))
  w = gd.grad_descent(x,y,init_weight,params["alpha"],params["iterations"])

  # get training error
  terror = rg.mse_error(x,y,w)

  return (w, ds, terror)
コード例 #3
0
ファイル: k_fold_validator.py プロジェクト: dridon/aml1
def train_regression(training, params={}): 
  # get data
  data,ds = transform_train_set(training)

  # generate regression
  m = rg.iter2matrix(data)
  x = m.T[:-1].T
  x = rg.append_ones(x)
  y =  m.T[-1:].T

  w = rg.regression_weights(x,y)

  # get training error
  terror = rg.mse_error(x,y,w)

  return (w, ds, terror)
コード例 #4
0
ファイル: k_fold_validator.py プロジェクト: dridon/aml1
def train_lasso(training, params={}): 
  # get data
  # t = fl.list2ordered_dict(training)
  # data,ds = fl.get_data2(t)
  data,ds = transform_train_set(training)

  # generate regression
  m = rg.iter2matrix(data)
  x = m.T[:-1].T
  y =  m.T[-1:].T
  w = rl.lasso_reg(x,y)

  # get training error
  x = rg.append_ones(x)
  terror = rg.mse_error(x,y,w)

  return (w, ds, terror)
コード例 #5
0
ファイル: grad_predictor.py プロジェクト: dridon/aml1
import unicodecsv as csv
import regression as rg

dataf = open('data/features/feature_data.csv', 'rt')
datac = csv.reader(dataf)
next(datac)
m = rg.iter2matrix(datac)
x = m.T[:-1].T
x = rg.append_ones(x)
y = m.T[-1:].T
init_weight = np.ones((x.shape[1], 1))
final_weight = grad_descent(x, y, init_weight, 0.00004, 1000)
print final_weight
print rg.mse_error(x, y, final_weight)
コード例 #6
0
ファイル: regression_predictor.py プロジェクト: dridon/aml1
import unicodecsv as csv 
import numpy as np 
import scipy as sp 
import math 
import regression as rg

dataf = open('data/features/feature_data.csv', 'rt')
datac = csv.reader(dataf)
next(datac)
m = rg.iter2matrix(datac) 
x1 = m.T[:-1].T
x = rg.append_ones(x1)
y =  m.T[-1:].T
w = rg.regression_weights(x,y)
lse = rg.lse_error(x, y, w) 
mse = rg.mse_error(x, y, w)

print "weights: " + str(w)
print "lse: " + str(lse)
print "mse: " + str(mse)
コード例 #7
0
ファイル: grad_predictor.py プロジェクト: dridon/aml1
import unicodecsv as csv
import regression as rg

dataf = open("data/features/feature_data.csv", "rt")
datac = csv.reader(dataf)
next(datac)
m = rg.iter2matrix(datac)
x = m.T[:-1].T
x = rg.append_ones(x)
y = m.T[-1:].T
init_weight = np.ones((x.shape[1], 1))
final_weight = grad_descent(x, y, init_weight, 0.00004, 1000)
print final_weight
print rg.mse_error(x, y, final_weight)