コード例 #1
0
 def test_compare_vectors_3_4_raises(self):
     with self.assertRaises(Exception) as context:
         compare_vectors(first_vector, longer_vector)
     self.assertEqual(type(context.exception), ValueError)
     self.assertEqual(
         str(context.exception),
         'Both arguments must contain the same number of elements')
コード例 #2
0
def component_form(initial_point, terminal_point):
    """
    Calculates the component form for a vector by using two points

    Parameters
    ----------
    initial_point : list of int or float
        List of numbers representing a point
    terminal_point : list of int or float
        List of numbers representing a point

    Raises
    ------
    TypeError
        Arguments must be 1-dimensional lists
    TypeError
        Elements of arguments must be integers or floats
    ValueError
        Both arguments must contain the same number of elements

    Returns
    -------
    components : list of int or float
        List in which each element is the difference of the corresponding elements from the input points (specifically, the change from the initial point to the terminal point)

    See Also
    --------
    :func:`~regressions.vectors.addition.vector_sum`, :func:`~regressions.vectors.multiplication.scalar_product_vector`, :func:`~regressions.vectors.direction.vector_direction`, :func:`~regressions.vectors.magnitude.vector_magnitude`

    Notes
    -----
    - Initial point: :math:`A = (a_1, a_2, \\cdots, a_n)`
    - Terminal point: :math:`B = (b_1, b_2, \\cdots, b_n)`
    - Component form of vector: :math:`\\overrightarrow{AB} = \\langle b_1 - a_1, b_2 - a_2, \\cdots, b_n - a_n \\rangle`
    - |component_form|

    Examples
    --------
    Import `component_form` function from `regressions` library
        >>> from regressions.vectors.components import component_form
    Determine the component form of a vector with an initial point of [1, 2, 3] and a terminal point of [4, 5, 6]
        >>> components_3d = component_form([1, 2, 3], [4, 5, 6])
        >>> print(components_3d)
        [3, 3, 3]
    Determine the component form of a vector with an initial point of [-5, 12] and a terminal point of [3, -7]
        >>> components_2d = component_form([-5, 12], [3, -7])
        >>> print(components_2d)
        [8, -19]
    """
    # Handle input errors
    compare_vectors(initial_point, terminal_point)

    # Determine difference between terminal point and initial point
    result = vector_sum(terminal_point,
                        scalar_product_vector(initial_point, -1))
    return result
コード例 #3
0
def multiple_residuals(actual_array, expected_array):
    """
    Generates a list of the differences between the actual values from one list and the expected values from another list

    Parameters
    ----------
    actual_array : list of int or float
        List containing the actual values observed from a data set
    expected_array : list of int or float
        List containing the expected values predicted for a data set

    Raises
    ------
    TypeError
        Arguments must be 1-dimensional lists
    TypeError
        Elements of arguments must be integers or floats
    ValueError
        Both arguments must contain the same number of elements

    Returns
    -------
    residuals : list of float
        Differences between the actual values and the expected values

    See Also
    --------
    :func:`~regressions.statistics.deviations.multiple_deviations`, :func:`~regressions.statistics.correlation.correlation_coefficient`

    Notes
    -----
    - Observed values: :math:`y_i = \\{ y_1, y_2, \\cdots, y_n \\}`
    - Predicted values: :math:`\\hat{y}_i = \\{ \\hat{y}_1, \\hat{y}_2, \\cdots, \\hat{y}_n \\}`
    - Residuals: :math:`e_i = \\{ y_1 - \\hat{y}_1, y_2 - \\hat{y}_2, \\cdots, y_n - \\hat{y}_n \\}`
    - |residual|

    Examples
    --------
    Import `multiple_residuals` function from `regressions` library
        >>> from regressions.statistics.residuals import multiple_residuals
    Determine the residuals between the actual values [5.6, 8.1, 6.3] and the expected values [6.03, 8.92, 6.12]
        >>> residuals_short = multiple_residuals([5.6, 8.1, 6.3], [6.03, 8.92, 6.12])
        >>> print(residuals_short)
        [-0.4300000000000006, -0.8200000000000003, 0.17999999999999972]
    Determine the residuals between the actual values [11.7, 5.6, 8.1, 13.4, 6.3] and the expected values [15.17, 6.03, 8.92, 9.42, 6.12]
        >>> residuals_long = multiple_residuals([11.7, 5.6, 8.1, 13.4, 6.3], [15.17, 6.03, 8.92, 9.42, 6.12])
        >>> print(residuals_long)
        [-3.4700000000000006, -0.4300000000000006, -0.8200000000000003, 3.9800000000000004, 0.17999999999999972]
    """
    # Handle input errors
    compare_vectors(actual_array, expected_array)

    # Create list to return
    results = []

    # Iterate over inputs
    for i in range(len(actual_array)):
        # Store residuals of corresponding elements in list to return
        results.append(single_residual(actual_array[i], expected_array[i]))

    # Return results
    return results
コード例 #4
0
def correlation_coefficient(actuals, expecteds, precision=4):
    """
    Calculates the correlation coefficient as a way to predict the strength of a predicted model by comparing the ratio of residuals to deviations, in order to determine a strong or weak relationship

    Parameters
    ----------
    actuals : list of int or float
        List containing the actual values observed from a data set
    expecteds : list of int or float
        List containing the expected values for a data set based on a predictive model
    precision : int, default=4
        Maximum number of digits that can appear after the decimal place of the result

    Raises
    ------
    TypeError
        First and second arguments must be 1-dimensional lists
    TypeError
        Elements of first and second arguments must be integers or floats
    ValueError
        First and second arguments must contain the same number of elements
    ValueError
        Last argument must be a positive integer

    Returns
    -------
    correlation : float
        Number indicating statistical strenght of the relationship between two variables; the closer to 1, the stronger; the closer to 0, the weaker

    See Also
    --------
    :func:`~regressions.statistics.residuals.multiple_residuals`, :func:`~regressions.statistics.deviations.multiple_deviations`, :func:`~regressions.statistics.summation.sum_value`

    Notes
    -----
    - Observed values: :math:`y_i = \\{ y_1, y_2, \\cdots, y_n \\}`
    - Predicted values: :math:`\\hat{y}_i = \\{ \\hat{y}_1, \\hat{y}_2, \\cdots, \\hat{y}_n \\}`
    - Mean of all observed values: :math:`\\bar{y} = \\frac{1}{n}\\cdot{\\sum\\limits_{i=1}^n y_i}`
    - Residuals: :math:`e_i = \\{ y_1 - \\hat{y}_1, y_2 - \\hat{y}_2, \\cdots, y_n - \\hat{y}_n \\}`
    - Deviations: :math:`d_i = \\{ y_1 - \\bar{y}, y_2 - \\bar{y}, \\cdots, y_n - \\bar{y} \\}`
    - Sum of squares of residuals: :math:`SS_{res} = \\sum\\limits_{i=1}^n e_i^2`
    - Sum of squares of deviations: :math:`SS_{dev} = \\sum\\limits_{i=1}^n d_i^2`
    - Correlation coefficient: :math:`r = \\sqrt{1 - \\frac{SS_{res}}{SS_{dev}}}`
    - |determination|

    Examples
    --------
    Import `correlation_coefficient` function from `regressions` library
        >>> from regressions.statistics.correlation import correlation_coefficient
    Calculate the correlation using the provided actual values [8.2, 9.41, 1.23, 34.7] and the predicted values [7.863, 8.9173, 2.0114, 35.8021]
        >>> correlation_short = correlation_coefficient([8.2, 9.41, 1.23, 34.7], [7.863, 8.9173, 2.0114, 35.8021])
        >>> print(correlation_short)
        0.9983
    Calculate the correlation using the provided actual values [2, 3, 5, 7, 11, 13, 17, 19] and the predicted values [1.0245, 3.7157, 6.1398, 8.1199, 12.7518, 14.9621, 15.2912, 25.3182]
        >>> correlation_long = correlation_coefficient([2, 3, 5, 7, 11, 13, 17, 19], [1.0245, 3.7157, 6.1398, 8.1199, 12.7518, 14.9621, 15.2912, 25.3182])
        >>> print(correlation_long)
        0.9011
    """
    # Handle input errors
    compare_vectors(actuals, expecteds)
    positive_integer(precision)

    # Determine residuals and deviations between actuals and expecteds
    residuals = multiple_residuals(actuals, expecteds)
    deviations = multiple_deviations(actuals)

    # Square residuals and deviations
    squared_residuals = []
    for residual in residuals:
        squared_residuals.append(residual**2)
    squared_deviations = []
    for deviation in deviations:
        squared_deviations.append(deviation**2)

    # Calculate the sums of the squares of the residuals and deviations
    residual_sum = sum_value(squared_residuals)
    deviation_sum = sum_value(squared_deviations)

    # Circumvent division by zero
    if deviation_sum == 0:
        deviation_sum = 10**(-precision)

    # Calculate key ratio
    ratio = residual_sum / deviation_sum

    # Handle no solution
    if ratio > 1:
        return 0.0

    # Handle general case
    else:
        result = (1 - ratio)**(1 / 2)
        return rounded_value(result, precision)
コード例 #5
0
def unite_vectors(vector_one, vector_two):
    """
    Unites two row vectors into a single matrix whose columns coincide with the input vectors

    Parameters
    ----------
    vector_one : list of int or float
        List of numbers representing a vector
    vector_two : list of int or float
        List of numbers representing a vector

    Raises
    ------
    TypeError
        Arguments must be 1-dimensional lists
    TypeError
        Elements of arguments must be integers or floats
    ValueError
        Both arguments must contain the same number of elements

    Returns
    -------
    matrix : list of lists of int or float
        List containing lists; length of outer list will equal lengths of supplied vectors; length of inner lists will equal two

    See Also
    --------
    :func:`~regressions.vectors.dimension.single_dimension`, :func:`~regressions.statistics.halve.partition`

    Notes
    -----
    - First vector: :math:`\\langle a_1, a_2, \\cdots, a_n \\rangle`
    - Second vector: :math:`\\langle b_1, b_2, \\cdots, b_n \\rangle`
    - Matrix unifying first and second vectors: :math:`\\begin{bmatrix} a_1 & b_1 \\\\ a_2 & b_2 \\\\ \\cdots & \\cdots \\\\ a_n & b_n \\end{bmatrix}`

    Examples
    --------
    Import `unite_vectors` function from `regressions` library
        >>> from regressions.vectors.unify import unite_vectors
    Unite [1, 2, 3] and [4, 5, 6]
        >>> matrix_3x2 = unite_vectors([1, 2, 3], [4, 5, 6])
        >>> print(matrix_2x3)
        [[1, 4], [2, 5], [3, 6]]
    Unite [-5, 12] and [3, -7]
        >>> matrix_2x2 = unite_vectors([-5, 12], [3, -7])
        >>> print(matrix_2x2)
        [[-5, 3], [12, -7]]
    """
    # Handle input errors
    compare_vectors(vector_one, vector_two)

    # Create list to return
    result = []

    # Handle no solution
    if vector_one[0] == None:
        result.append(None)

    # Handle general case
    else:
        # Iterate over inputs
        for i in range(len(vector_one)):
            # Store corresponding elements from inputs as lists within list to return
            result.append([vector_one[i], vector_two[i]])

    # Return result
    return result
コード例 #6
0
 def test_compare_vectors_3_3(self):
     compare_vectors_3_3 = compare_vectors(first_vector, second_vector)
     self.assertEqual(compare_vectors_3_3,
                      'Both arguments contain the same number of elements')
コード例 #7
0
def vector_sum(vector_one, vector_two):
    """
    Calculates the sum of two vectors

    Parameters
    ----------
    vector_one : list of int or float
        List of numbers representing a vector
    vector_two : list of int or float
        List of numbers representing a vector

    Raises
    ------
    TypeError
        Arguments must be 1-dimensional lists
    TypeError
        Elements of arguments must be integers or floats
    ValueError
        Both arguments must contain the same number of elements

    Returns
    -------
    vector : list of int or float
        List in which each element is the sum of the corresponding elements from the input vectors

    See Also
    --------
    :func:`~regressions.matrices.addition.matrix_sum`, :func:`~regressions.vectors.multiplication.scalar_product_vector`

    Notes
    -----
    - First vector: :math:`\\mathbf{a} = \\langle a_1, a_2, \\cdots, a_n \\rangle`
    - Second vector: :math:`\\mathbf{b} = \\langle b_1, b_2, \\cdots, b_n \\rangle`
    - Sum of vectors: :math:`\\mathbf{a} + \\mathbf{b} = \\langle a_1 + b_1, a_2 + b_2, \\cdots, a_n + b_n \\rangle`
    - |vector_addition|

    Examples
    --------
    Import `vector_sum` function from `regressions` library
        >>> from regressions.vectors.addition import vector_sum
    Add [1, 2, 3] and [4, 5, 6]
        >>> vector_3d = vector_sum([1, 2, 3], [4, 5, 6])
        >>> print(vector_3d)
        [5, 7, 9]
    Add [-5, 12] and [3, -7]
        >>> vector_2d = vector_sum([-5, 12], [3, -7])
        >>> print(vector_2d)
        [-2, 5]
    """
    # Handle input errors
    compare_vectors(vector_one, vector_two)

    # Create list to return
    result = []

    # Iterate over first input
    for i in range(len(vector_one)):
        # Store sums of corresponding vector elements in result
        result.append(vector_one[i] + vector_two[i])

    # Return result
    return result
コード例 #8
0
def dot_product(vector_one, vector_two):
    """
    Calculates the product of two vectors

    Parameters
    ----------
    vector_one : list of int or float
        List of numbers representing a vector
    vector_two : list of int or float
        List of numbers representing a vector

    Raises
    ------
    TypeError
        Arguments must be 1-dimensional lists
    TypeError
        Elements of arguments must be integers or floats
    ValueError
        Both arguments must contain the same number of elements

    Returns
    -------
    product : float
        Number created by summing the products of the corresponding terms from each input vector

    See Also
    --------
    :func:`~regressions.matrices.multiplication.matrix_product`

    Notes
    -----
    - First vector: :math:`\\mathbf{a} = \\langle a_1, a_2, \\cdots, a_n \\rangle`
    - Second vector: :math:`\\mathbf{b} = \\langle b_1, b_2, \\cdots, b_n \\rangle`:
    - Dot product of vectors: :math:`\\mathbf{a}\\cdot{\\mathbf{b}} = a_1\\cdot{b_1} + a_2\\cdot{b_2} + \\cdots + a_n\\cdot{b_n}`
    - |dot_product|

    Examples
    --------
    Import `dot_product` function from `regressions` library
        >>> from regressions.vectors.multiplication import dot_product
    Multiply [1, 2, 3] and [4, 5, 6]
        >>> product_3d = dot_product([1, 2, 3], [4, 5, 6])
        >>> print(product_3d)
        32.0
    Multiply [-5, 12] and [3, -7]
        >>> product_2d = dot_product([-5, 12], [3, -7])
        >>> print(product_2d)
        -99.0
    """
    # Handle input errors
    compare_vectors(vector_one, vector_two)

    # Create intermediary number
    result = 0

    # Iterate over inputs
    for i in range(len(vector_one)):
        # Add products of corresponding elements from inputs to intermediary number
        result += vector_one[i] * vector_two[i]

    # Convert number to float
    floated_result = float(result)
    return floated_result