class ProperSurrogateModel(SurrogateModel): def __init__(self, fitness, configuration, controller): super(ProperSurrogateModel, self).__init__(fitness, configuration, controller) if configuration.classifier == 'SupportVectorMachine': self.classifier = SupportVectorMachineClassifier() else: logging.error('Classifier type {} not found'.format( configuration.classifier)) if configuration.regressor == 'GaussianProcess': self.regressor = GaussianProcessRegressor(controller) else: logging.error('Regressor type {} not found'.format( configuration.regressor)) def train(self, pop): dimensions = self.fitness.dimensions return self.classifier.train(pop) and self.regressor.train( pop, self.configuration, dimensions) def add_training_instance(self, part, code, fitness): self.classifier.add_training_instance(part, code) self.regressor.add_training_instance(part, fitness)
def __init__(self, fitness, configuration, controller): super(ProperSurrogateModel, self).__init__(fitness, configuration, controller) if configuration.classifier == 'SupportVectorMachine': self.classifier = SupportVectorMachineClassifier() else: logging.error('Classifier type {} not found'.format( configuration.classifier)) if configuration.regressor == 'GaussianProcess': self.regressor = GaussianProcessRegressor(controller) else: logging.error('Regressor type {} not found'.format( configuration.regressor))